Communication-efficient algorithms for decentralized and stochastic optimization

被引:4
|
作者
Guanghui Lan
Soomin Lee
Yi Zhou
机构
[1] Georgia Institute of Technology,Department of Industrial and Systems Engineering
来源
Mathematical Programming | 2020年 / 180卷
关键词
Decentralized optimization; Decentralized machine learning; Communication efficient; Stochastic programming; Nonsmooth functions; Primal–dual method; Complexity; 90C25; 90C06; 90C22; 49M37; 93A14; 90C15;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new class of decentralized first-order methods for nonsmooth and stochastic optimization problems defined over multiagent networks. Considering that communication is a major bottleneck in decentralized optimization, our main goal in this paper is to develop algorithmic frameworks which can significantly reduce the number of inter-node communications. Our major contribution is to present a new class of decentralized primal–dual type algorithms, namely the decentralized communication sliding (DCS) methods, which can skip the inter-node communications while agents solve the primal subproblems iteratively through linearizations of their local objective functions. By employing DCS, agents can find an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solution both in terms of functional optimality gap and feasibility residual in O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\epsilon )$$\end{document} (resp., O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\sqrt{\epsilon })$$\end{document}) communication rounds for general convex functions (resp., strongly convex functions), while maintaining the O(1/ϵ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\epsilon ^2)$$\end{document} (resp., O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}(1/\epsilon )$$\end{document}) bound on the total number of intra-node subgradient evaluations. We also present a stochastic counterpart for these algorithms, denoted by SDCS, for solving stochastic optimization problems whose objective function cannot be evaluated exactly. In comparison with existing results for decentralized nonsmooth and stochastic optimization, we can reduce the total number of inter-node communication rounds by orders of magnitude while still maintaining the optimal complexity bounds on intra-node stochastic subgradient evaluations. The bounds on the (stochastic) subgradient evaluations are actually comparable to those required for centralized nonsmooth and stochastic optimization under certain conditions on the target accuracy.
引用
收藏
页码:237 / 284
页数:47
相关论文
共 50 条
  • [1] Communication-efficient algorithms for decentralized and stochastic optimization
    Lan, Guanghui
    Lee, Soomin
    Zhou, Yi
    MATHEMATICAL PROGRAMMING, 2020, 180 (1-2) : 237 - 284
  • [2] Communication-Efficient Algorithms for Statistical Optimization
    Zhang, Yuchen
    Duchi, John C.
    Wainwright, Martin J.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 6792 - 6792
  • [3] Expander Graph and Communication-Efficient Decentralized Optimization
    Chow, Yat-Tin
    Shi, Wei
    Wu, Tianyu
    Yin, Wotao
    2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2016, : 1715 - 1720
  • [4] Communication-Efficient Algorithms for Statistical Optimization
    Zhang, Yuchen
    Duchi, John C.
    Wainwright, Martin J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 3321 - 3363
  • [5] DIFFERENTIAL ERROR FEEDBACK FOR COMMUNICATION-EFFICIENT DECENTRALIZED OPTIMIZATION
    Nassif, Roula
    Vlaski, Stefan
    Carpentiero, Marco
    Matta, Vincenzo
    Sayed, Ali H.
    2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, SAM 2024, 2024,
  • [6] COMMUNICATION-EFFICIENT WEIGHTED ADMM FOR DECENTRALIZED NETWORK OPTIMIZATION
    Ling, Qing
    Liu, Yaohua
    Shi, Wei
    Tian, Zhi
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4821 - 4825
  • [7] Communication-efficient Algorithms for Distributed Stochastic Principal Component Analysis
    Garber, Dan
    Shamir, Ohad
    Srebro, Nathan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [8] Communication-Efficient Stochastic Gradient Descent Ascent with Momentum Algorithms
    Zhang, Yihan
    Qiu, Meikang
    Gao, Hongchang
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 4602 - 4610
  • [9] Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication
    Koloskova, Anastasia
    Stich, Sebastian U.
    Jaggi, Martin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [10] Communication-Efficient Decentralized Subspace Estimation
    Jiao, Yuchen
    Gu, Yuantao
    IEEE Journal on Selected Topics in Signal Processing, 2022, 16 (03): : 516 - 531