A Monolithic Arbitrary Lagrangian–Eulerian Finite Element Analysis for a Stokes/Parabolic Moving Interface Problem

被引:0
|
作者
Rihui Lan
Pengtao Sun
机构
[1] University of Nevada Las Vegas,Department of Mathematical Sciences
来源
关键词
Stokes/parabolic interface problem; Arbitrary Lagrangian–Eulerian (ALE) mapping; -projection; Mixed finite element; Optimal error estimates; Stability analysis; 65N30; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an arbitrary Lagrangian–Eulerian (ALE)—finite element method (FEM) is developed within the monolithic approach for a moving-interface model problem of a transient Stokes/parabolic coupling with jump coefficients—a linearized fluid-structure interaction (FSI) problem. A new H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-projection is defined for this problem for the first time to account for the mesh motion due to the moving interface. The well-posedness and optimal convergence properties in both the energy norm and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm are analyzed for this mixed-type H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-projection, with which the stability and optimal error estimate in the energy norm are derived for both semi- and fully discrete mixed finite element approximations to the Stokes/parabolic interface problem. Numerical experiments are carried out to validate all theoretical results. The developed analytical approach can be extended to a general FSI problem.
引用
收藏
相关论文
共 50 条
  • [41] EMPLOYMENT OF EULERIAN, LAGRANGIAN, AND ARBITRARY LAGRANGIAN-EULERIAN DESCRIPTION FOR CRACK OPENING PROBLEM
    Ivanova, E. A.
    Matyas, D., V
    Stepanov, M. D.
    MATERIALS PHYSICS AND MECHANICS, 2019, 42 (04): : 470 - 483
  • [42] ARBITRARY LAGRANGIAN-EULERIAN THERMOMECHANICAL FINITE-ELEMENT MODEL OF MATERIAL CUTTING
    RAKOTOMALALA, R
    JOYOT, P
    TOURATIER, M
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1993, 9 (12): : 975 - 987
  • [43] On friction modeling in orthogonal machining: An Arbitrary Lagrangian-Eulerian finite element model
    Haglund, AJ
    Kishawy, HA
    Rogers, RJ
    Transactions of the North American Manufacturing Research Institution of SME 2005, Vol 33, 2005, 2005, 33 : 589 - 596
  • [44] A monolithic arbitrary Lagrangian-Eulerian-based finite element strategy for fluid-structure interaction problems involving a compressible fluid
    Dutta, Suman
    Jog, C. S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (21) : 6037 - 6102
  • [45] FINITE ELEMENT MODELING OF OBLIQUE MACHINING USING AN ARBITRARY LAGRANGIAN-EULERIAN FORMULATION
    Llanos, I.
    Villar, J. A.
    Urresti, I.
    Arrazola, P. J.
    MACHINING SCIENCE AND TECHNOLOGY, 2009, 13 (03) : 385 - 406
  • [46] A cut finite element method for a Stokes interface problem
    Hansbo, Peter
    Larson, Mats G.
    Zahedi, Sara
    APPLIED NUMERICAL MATHEMATICS, 2014, 85 : 90 - 114
  • [47] Immersed finite element methods for parabolic equations with moving interface
    He, Xiaoming
    Lin, Tao
    Lin, Yanping
    Zhang, Xu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (02) : 619 - 646
  • [48] Finite element analysis of transient thermomechanical rolling contact using an efficient arbitrary Lagrangian-Eulerian description
    Draganis, Andreas
    Larsson, Fredrik
    Ekberg, Anders
    COMPUTATIONAL MECHANICS, 2014, 54 (02) : 389 - 405
  • [49] AN ARBITRARY LAGRANGIAN-EULERIAN FINITE-ELEMENT MODEL FOR HEAT-TRANSFER ANALYSIS OF SOLIDIFICATION PROCESSES
    GHOSH, S
    MOORTHY, S
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1993, 23 (03) : 327 - 350
  • [50] Direct Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes
    Gaburro, Elena
    Dumbser, Michael
    Castro, Manuel J.
    COMPUTERS & FLUIDS, 2017, 159 : 254 - 275