A Monolithic Arbitrary Lagrangian–Eulerian Finite Element Analysis for a Stokes/Parabolic Moving Interface Problem

被引:0
|
作者
Rihui Lan
Pengtao Sun
机构
[1] University of Nevada Las Vegas,Department of Mathematical Sciences
来源
关键词
Stokes/parabolic interface problem; Arbitrary Lagrangian–Eulerian (ALE) mapping; -projection; Mixed finite element; Optimal error estimates; Stability analysis; 65N30; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an arbitrary Lagrangian–Eulerian (ALE)—finite element method (FEM) is developed within the monolithic approach for a moving-interface model problem of a transient Stokes/parabolic coupling with jump coefficients—a linearized fluid-structure interaction (FSI) problem. A new H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-projection is defined for this problem for the first time to account for the mesh motion due to the moving interface. The well-posedness and optimal convergence properties in both the energy norm and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm are analyzed for this mixed-type H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-projection, with which the stability and optimal error estimate in the energy norm are derived for both semi- and fully discrete mixed finite element approximations to the Stokes/parabolic interface problem. Numerical experiments are carried out to validate all theoretical results. The developed analytical approach can be extended to a general FSI problem.
引用
收藏
相关论文
共 50 条