Colouring Clique-Hypergraphs of Circulant Graphs

被引:0
|
作者
C. N. Campos
S. Dantas
C. P. de Mello
机构
[1] University of Campinas,Institute of Computing
[2] Fluminense Federal University,Institute of Mathematics and Statistics
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Graph and hypergraph colouring; Clique-colouring; Circulant graphs; Powers of cycles;
D O I
暂无
中图分类号
学科分类号
摘要
A clique-colouring of a graph G is a colouring of the vertices of G so that no maximal clique of size at least two is monochromatic. The clique-hypergraph, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}(G)}$$\end{document} , of a graph G has V(G) as its set of vertices and the maximal cliques of G as its hyperedges. A vertex-colouring of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}(G)}$$\end{document} is a clique-colouring of G. Determining the clique-chromatic number, the least number of colours for which a graph G admits a clique-colouring, is known to be NP-hard. In this work, we establish that the clique-chromatic number of powers of cycles is equal to two, except for odd cycles of size at least five, that need three colours. For odd-seq circulant graphs, we show that their clique-chromatic number is at most four, and determine the cases when it is equal to two. Similar bounds for the chromatic number of these graphs are also obtained.
引用
收藏
页码:1713 / 1720
页数:7
相关论文
共 50 条
  • [21] Coordinated graphs and clique graphs of clique-Helly perfect graphs
    Bonomo, Flavia
    Duran, Guillermo
    Groshaus, Marina
    UTILITAS MATHEMATICA, 2007, 72 : 175 - 191
  • [22] Hierarchical Complexity of 2-Clique-Colouring Weakly Chordal Graphs and Perfect Graphs Having Cliques of Size at Least 3
    Macedo Filho, Helio B.
    Machado, Raphael C. S.
    Figueiredo, Celina M. H.
    LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 13 - 23
  • [23] Hierarchical complexity of 2-clique-colouring weakly chordal graphs and perfect graphs having cliques of size at least 3
    Macedo Filho, Helio B.
    Machado, Raphael C. S.
    de Figueiredo, Celina M. H.
    THEORETICAL COMPUTER SCIENCE, 2016, 618 : 122 - 134
  • [24] On clique-inverse graphs of graphs with bounded clique number
    Alcon, Liliana
    Gravier, Sylvain
    Sales, Claudia L.
    Protti, Fabio
    Ravenna, Gabriela
    JOURNAL OF GRAPH THEORY, 2020, 94 (04) : 531 - 538
  • [25] CLIQUE GRAPHS OF TIME GRAPHS
    HEDMAN, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (03) : 270 - 278
  • [26] SELF-CLIQUE GRAPHS AND DIAMETERS OF ITERATED CLIQUE GRAPHS
    BALAKRISHNAN, R
    PAULRAJA, P
    UTILITAS MATHEMATICA, 1986, 29 : 263 - 268
  • [27] CLIQUE GRAPHS AND HELLY GRAPHS
    BANDELT, HJ
    PRISNER, E
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 51 (01) : 34 - 45
  • [28] Clique graphs of planar graphs
    Alcón, L
    Gutierrez, M
    ARS COMBINATORIA, 2004, 71 : 257 - 265
  • [29] Chordal graphs and their clique graphs
    Galinier, P
    Habib, M
    Paul, C
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 1995, 1017 : 358 - 371
  • [30] CLIQUE GRAPHS OF PACKED GRAPHS
    SATO, I
    DISCRETE MATHEMATICS, 1986, 62 (01) : 107 - 109