Colouring Clique-Hypergraphs of Circulant Graphs

被引:0
|
作者
C. N. Campos
S. Dantas
C. P. de Mello
机构
[1] University of Campinas,Institute of Computing
[2] Fluminense Federal University,Institute of Mathematics and Statistics
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Graph and hypergraph colouring; Clique-colouring; Circulant graphs; Powers of cycles;
D O I
暂无
中图分类号
学科分类号
摘要
A clique-colouring of a graph G is a colouring of the vertices of G so that no maximal clique of size at least two is monochromatic. The clique-hypergraph, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}(G)}$$\end{document} , of a graph G has V(G) as its set of vertices and the maximal cliques of G as its hyperedges. A vertex-colouring of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}(G)}$$\end{document} is a clique-colouring of G. Determining the clique-chromatic number, the least number of colours for which a graph G admits a clique-colouring, is known to be NP-hard. In this work, we establish that the clique-chromatic number of powers of cycles is equal to two, except for odd cycles of size at least five, that need three colours. For odd-seq circulant graphs, we show that their clique-chromatic number is at most four, and determine the cases when it is equal to two. Similar bounds for the chromatic number of these graphs are also obtained.
引用
收藏
页码:1713 / 1720
页数:7
相关论文
共 50 条
  • [11] The metric dimension of circulant graphs and Cayley hypergraphs
    Borchert, Adam
    Gosselin, Shonda
    UTILITAS MATHEMATICA, 2018, 106 : 125 - 147
  • [12] Fractional clique decompositions of dense graphs and hypergraphs
    Barber, Ben
    Kuhn, Daniela
    Lo, Allan
    Montgomery, Richard
    Osthus, Deryk
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 127 : 148 - 186
  • [13] Clique-Colouring and Biclique-Colouring Unichord-Free Graphs
    Macedo Filho, Helio B.
    Machado, Raphael C. S.
    Figueiredo, Celina M. H.
    LATIN 2012: THEORETICAL INFORMATICS, 2012, 7256 : 530 - 541
  • [14] On the complexity of bicoloring clique hypergraphs of graphs (extended abstract)
    Kratochvíl, J
    Tuza, Z
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 40 - 41
  • [15] Vertex-colouring of 3-chromatic circulant graphs
    Nicoloso, S.
    Pietropaoli, U.
    DISCRETE APPLIED MATHEMATICS, 2017, 229 : 121 - 138
  • [16] Efficient Algorithms for Clique-Colouring and Biclique-Colouring Unichord-Free Graphs
    Macedo Filho, H. B.
    Machado, R. C. S.
    de Figueiredo, C. M. H.
    ALGORITHMICA, 2017, 77 (03) : 786 - 814
  • [17] Efficient Algorithms for Clique-Colouring and Biclique-Colouring Unichord-Free Graphs
    H. B. Macêdo Filho
    R. C. S. Machado
    C. M. H. de Figueiredo
    Algorithmica, 2017, 77 : 786 - 814
  • [18] CONSTRAINED COLOURING AND σ-HYPERGRAPHS
    Caro, Yair
    Lauri, Josef
    Zarb, Christina
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (01) : 171 - 189
  • [19] Reduced Clique Graphs: A Correction to "Chordal Graphs and Their Clique Graphs"
    Mayhew, Dillon
    Probert, Andrew
    GRAPHS AND COMBINATORICS, 2024, 40 (03)
  • [20] Sum-list-colouring of θ-hypergraphs
    Drgas-Burchardt, Ewa
    Drzystek, Agata
    Sidorowicz, Elzbieta
    ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (01)