Bifurcation and new traveling wave solutions for (2 + 1)-dimensional nonlinear Nizhnik–Novikov–Veselov dynamical equation

被引:0
|
作者
M. E. Elbrolosy
A. A. Elmandouh
机构
[1] King Faisal University,Department of Mathematics and Statistics, College of Science
[2] Tanta University,Department of Mathematics, Faculty of Science
[3] Mansoura University,Department of Mathematics, Faculty of Science
来源
The European Physical Journal Plus | / 135卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The bifurcation theory for planar dynamical systems is applied to the traveling wave system corresponding to the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional nonlinear Nizhnik–Novikov–Veselov dynamical equation. For certain values of the bifurcation parameters, we introduce new traveling wave solutions. These solutions are expressed in terms of elliptic Jacobi functions and Weierstrass elliptic function. These solutions are graphically clarified.
引用
收藏
相关论文
共 50 条