Bifurcation and new traveling wave solutions for (2 + 1)-dimensional nonlinear Nizhnik–Novikov–Veselov dynamical equation

被引:0
|
作者
M. E. Elbrolosy
A. A. Elmandouh
机构
[1] King Faisal University,Department of Mathematics and Statistics, College of Science
[2] Tanta University,Department of Mathematics, Faculty of Science
[3] Mansoura University,Department of Mathematics, Faculty of Science
来源
The European Physical Journal Plus | / 135卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The bifurcation theory for planar dynamical systems is applied to the traveling wave system corresponding to the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional nonlinear Nizhnik–Novikov–Veselov dynamical equation. For certain values of the bifurcation parameters, we introduce new traveling wave solutions. These solutions are expressed in terms of elliptic Jacobi functions and Weierstrass elliptic function. These solutions are graphically clarified.
引用
收藏
相关论文
共 50 条
  • [31] Soliton molecules in the (2+1)-dimensional Nizhnik-Novikov-Veselov equation
    Wu, Huiling
    Fei, Jinxi
    Ma, Zhengyi
    MODERN PHYSICS LETTERS B, 2021, 35 (21):
  • [32] Complexiton solutions to the asymmetric Nizhnik-Novikov-Veselov equation
    Manukure, Solomon
    Chowdhury, Abhinandan
    Zhou, Yuan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (11):
  • [33] Painlevé analysis, integrability and exact solutions for a (2 + 1)-dimensional generalized Nizhnik-Novikov-Veselov equation
    Gui-Qiong Xu
    Shu-Fang Deng
    The European Physical Journal Plus, 131
  • [34] MULTI-COMPLEXITON SOLUTIONS OF THE (2+1)-DIMENSIONAL ASYMMETRICAL NIZHNIK-NOVIKOV-VESELOV EQUATION
    Wu, Pin-Xia
    Ling, Wei-Wei
    THERMAL SCIENCE, 2021, 25 (03): : 2043 - 2049
  • [35] Dark and Trigonometric Soliton Solutions in Asymmetrical Nizhnik-Novikov-Veselov Equation with (2+1)-dimensional
    Baskonus, Haci Mehmet
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2021, 11 (01): : 92 - 99
  • [36] The lump solutions for the (2+1)-dimensional Nizhnik-Novikov-Veselov equations
    Guo, Yanfeng
    Guo, Chunxiao
    Li, Donglong
    APPLIED MATHEMATICS LETTERS, 2021, 121
  • [37] New Exact Solutions and Complex Wave Excitations for the (2+1)-Dimensional Asymmetric Nizhnik-Novikov-Veselov System
    Li, Jiang-Bo
    Zheng, Chun-Long
    Ma, Song-Hua
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (10-11): : 641 - 645
  • [38] New Exact Solutions of the (2+1)-Dimensional Asymmetric Nizhnik-Novikov-Veselov System
    Chao-Qing Dai
    Sheng-Sheng Wu
    Xu Cen
    International Journal of Theoretical Physics, 2008, 47 : 1286 - 1293
  • [39] New exact solutions of the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov system
    Dai, Chao-Qing
    Wu, Sheng-Sheng
    Cen, Xu
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (05) : 1286 - 1293
  • [40] Some elliptic traveling wave solutions to the Novikov-Veselov equation
    Nickel, J.
    Serov, V. S.
    Schuermann, H. W.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2006, 61 : 323 - 331