On fractional p-Laplacian parabolic problem with general data

被引:0
|
作者
B. Abdellaoui
A. Attar
R. Bentifour
I. Peral
机构
[1] Université Abou Bakr Belkaïd,Laboratoire d’Analyse Nonlinéaire et Mathématiques Appliquées, Département de Mathématiques
[2] U. Autonoma de Madrid,Departamento de Matemáticas
关键词
Nonlinear nonlocal parabolic problems; Entropy solution; Finite time extinction; Speed of propagation; 35K59; 35K65; 35K92; 35B09; 60J75;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, the problem to be studied is the following (P)ut+(-Δps)u=f(x,t)inΩT≡Ω×(0,T),u=0in(RN\Ω)×(0,T),u(x,0)=u(x)inΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (P) \left\{ \begin{array}{llll} u_t+(-\Delta ^s_{p}) u = f(x,t) &{}\quad \text { in } \Omega _{T}\equiv \Omega \times (0,T), \\ u = 0 &{}\quad \text { in }({\mathbb {R}}^N{\setminus }\Omega ) \times (0,T), \\ u(x,0) = u(x) &{}\quad \text{ in } \Omega , \end{array} \right. \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded domain and (-Δps)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta ^s_{p})$$\end{document} is the fractional p-Laplacian operator defined by (-Δps)u(x,t):=P.V∫RN|u(x,t)-u(y,t)|p-2(u(x,t)-u(y,t))|x-y|N+psdy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta ^s_{p})\, u(x,t):=P.V\int _{{\mathbb {R}}^N} \,\dfrac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+ps}} \,\mathrm{d}y \end{aligned}$$\end{document}with 1<p<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<N$$\end{document}, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1)$$\end{document} and f,u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f, u_0$$\end{document} being measurable functions. The main goal of this work is to prove that if (f,u0)∈L1(ΩT)×L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f,u_0)\in L^1(\Omega _T)\times L^1(\Omega )$$\end{document}, problem (P) has a weak solution with suitable regularity. In addition, if f0,u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0, u_0$$\end{document} are nonnegative, we show that the problem above has a nonnegative entropy solution. In the case of nonnegative data, we give also some quantitative and qualitative properties of the solution according the values of p.
引用
收藏
页码:329 / 356
页数:27
相关论文
共 50 条
  • [41] Fractional p-Laplacian problem with indefinite weight in RN: Eigenvalues and existence
    Cui, Na
    Sun, Hong-Rui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2585 - 2599
  • [42] Fractional p-Laplacian Problem with Critical Stein–Weiss Type Term
    Yu Su
    The Journal of Geometric Analysis, 2023, 33
  • [43] Criteria of Existence for a q Fractional p-Laplacian Boundary Value Problem
    Ragoub, Lakhdar
    Tchier, Fairouz
    Tawfiq, Ferdous
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2020, 6
  • [44] Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem
    I. Merzoug
    A. Guezane-Lakoud
    R. Khaldi
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1099 - 1106
  • [45] Nonlocal boundary value problem for fractional differential equations with p-Laplacian
    Zhi, Ertao
    Liu, Xiping
    Li, Fanfan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (17) : 2651 - 2662
  • [46] Solvability of fractional boundary value problem with p-Laplacian operator at resonance
    Tengfei Shen
    Wenbin Liu
    Xiaohui Shen
    Advances in Difference Equations, 2013
  • [47] A multiplicity result for a fractional p-Laplacian problem without growth conditions
    Ambrosio, Vincenzo
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2018, 9 (01): : 53 - 71
  • [48] Singular elliptic problem involving a fractional p-Laplacian with discontinuous nonlinearity
    Hanaâ Achour
    Sabri Bensid
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [49] Limit problems for a Fractional p-Laplacian as p → ∞
    Ferreira, Raul
    Perez-Llanos, Mayte
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (02):
  • [50] Existence results for singular elliptic problem involving a fractional p-Laplacian
    Achour, Hanaa
    Bensid, Sabri
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (05) : 2361 - 2391