On fractional p-Laplacian parabolic problem with general data

被引:0
|
作者
B. Abdellaoui
A. Attar
R. Bentifour
I. Peral
机构
[1] Université Abou Bakr Belkaïd,Laboratoire d’Analyse Nonlinéaire et Mathématiques Appliquées, Département de Mathématiques
[2] U. Autonoma de Madrid,Departamento de Matemáticas
关键词
Nonlinear nonlocal parabolic problems; Entropy solution; Finite time extinction; Speed of propagation; 35K59; 35K65; 35K92; 35B09; 60J75;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, the problem to be studied is the following (P)ut+(-Δps)u=f(x,t)inΩT≡Ω×(0,T),u=0in(RN\Ω)×(0,T),u(x,0)=u(x)inΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (P) \left\{ \begin{array}{llll} u_t+(-\Delta ^s_{p}) u = f(x,t) &{}\quad \text { in } \Omega _{T}\equiv \Omega \times (0,T), \\ u = 0 &{}\quad \text { in }({\mathbb {R}}^N{\setminus }\Omega ) \times (0,T), \\ u(x,0) = u(x) &{}\quad \text{ in } \Omega , \end{array} \right. \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded domain and (-Δps)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta ^s_{p})$$\end{document} is the fractional p-Laplacian operator defined by (-Δps)u(x,t):=P.V∫RN|u(x,t)-u(y,t)|p-2(u(x,t)-u(y,t))|x-y|N+psdy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta ^s_{p})\, u(x,t):=P.V\int _{{\mathbb {R}}^N} \,\dfrac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+ps}} \,\mathrm{d}y \end{aligned}$$\end{document}with 1<p<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<N$$\end{document}, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1)$$\end{document} and f,u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f, u_0$$\end{document} being measurable functions. The main goal of this work is to prove that if (f,u0)∈L1(ΩT)×L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f,u_0)\in L^1(\Omega _T)\times L^1(\Omega )$$\end{document}, problem (P) has a weak solution with suitable regularity. In addition, if f0,u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0, u_0$$\end{document} are nonnegative, we show that the problem above has a nonnegative entropy solution. In the case of nonnegative data, we give also some quantitative and qualitative properties of the solution according the values of p.
引用
收藏
页码:329 / 356
页数:27
相关论文
共 50 条
  • [21] The Cauchy problem for a parabolic p-Laplacian equation with combined nonlinearities
    Lu, Heqian
    Zhang, Zhengce
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)
  • [22] EXISTENCE AND GLOBAL BEHAVIOR OF SOLUTIONS TO FRACTIONAL p-LAPLACIAN PARABOLIC PROBLEMS
    Giacomoni, Jacques
    Tiwari, Sweta
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [23] On parabolic problems involving fractional p-Laplacian via topological degree
    Talibi, Ihya
    Taqbibt, Abdellah
    El Boukari, Brahim
    El Ghordaf, Jalila
    El Omari, M'hamed
    FILOMAT, 2024, 38 (20) : 7173 - 7181
  • [24] On the Evolutionary Fractional p-Laplacian
    Puhst, Dimitri
    APPLIED MATHEMATICS RESEARCH EXPRESS, 2015, (02) : 253 - 273
  • [25] On the fractional p-Laplacian problems
    Choi, Q-Heung
    Jung, Tacksun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [26] On the fractional p-Laplacian problems
    Q-Heung Choi
    Tacksun Jung
    Journal of Inequalities and Applications, 2021
  • [27] The Brezis–Nirenberg Problem for the Fractional p-Laplacian in Unbounded Domains
    Yan Sheng SHEN
    Acta Mathematica Sinica,English Series, 2023, (11) : 2181 - 2206
  • [28] Radial symmetry for a generalized nonlinear fractional p-Laplacian problem
    Hou, Wenwen
    Zhang, Lihong
    Agarwal, Ravi P.
    Wang, Guotao
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (02): : 349 - 362
  • [29] The Brezis–Nirenberg Problem for the Fractional p-Laplacian in Unbounded Domains
    Yan Sheng Shen
    Acta Mathematica Sinica, English Series, 2023, 39 : 2181 - 2206
  • [30] Multiplicity of Nontrivial Solutions of a Class of Fractional p-Laplacian Problem
    Abdeljabbar, Ghanmi
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (03): : 309 - 319