Tangent modulus tensor in plasticity under finite strain

被引:0
|
作者
D. W. Nicholson
B. Lin
机构
[1] University of Central Florida,Institute for Computational Engineering, Department of Mechanical, Materials and Aerospace Engineering
来源
Acta Mechanica | 1999年 / 134卷
关键词
Finite Element Simulation; Incompressibility; Kronecker Product; Isotropic Hardening; Kinematic Hardening;
D O I
暂无
中图分类号
学科分类号
摘要
The tangent modulus tensor, denoted as\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document}, plays a central role in finite element simulation of nonlinear applications such as metalforming. Using Kronecker product notation, compact expressions for\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document} have been derived in Refs. [1]–[3] for hyperelastic materials with reference to the Lagrangian configuration. In the current investigation, the corresponding expression is derived for materials experiencing finite strain due to plastic flow, starting from yield and flow relations referred to the current configuration. Issues posed by the decomposition into elastic and plastic strains and by the objective stress flux are addressed. Associated and non-associated models are accommodated, as is “plastic incompressibility”. A constitutive inequality with uniqueness implications is formulated which extends the condition for “stability in the small” to finite strain. Modifications of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document} are presented which accommodate kinematic hardening. As an illustration,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document} is presented for finite torsion of a shaft, comprised of a steel described by a von Mises yield function with isotropic hardening.
引用
收藏
页码:199 / 215
页数:16
相关论文
共 50 条
  • [31] Consistent tangent operator for plasticity models based on the plastic strain rate potential
    Szabo, L
    Jonas, JJ
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 128 (3-4) : 315 - 323
  • [32] Topology optimization based on finite strain plasticity
    Wallin, Mathias
    Jonsson, Viktor
    Wingren, Eric
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2016, 54 (04) : 783 - 793
  • [33] Multifield finite strain plasticity: Theory and numerics
    Lewandowski, Karol
    Barbera, Daniele
    Blackwell, Paul
    Roohi, Amir H.
    Athanasiadis, Ignatios
    McBride, Andrew
    Steinmann, Paul
    Pearce, Chris
    Kaczmarczyk, Lukasz
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 414
  • [34] A finite deformation theory of strain gradient plasticity
    Hwang, KC
    Jiang, H
    Huang, Y
    Gao, H
    Hu, N
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2002, 50 (01) : 81 - 99
  • [35] Consistent strain method in finite element plasticity
    Bernspang, L.
    Samuelsson, A.
    Kuessner, M.
    Wriggers, P.
    Computers and Structures, 1995, 54 (01): : 27 - 33
  • [36] Topology optimization based on finite strain plasticity
    Mathias Wallin
    Viktor Jönsson
    Eric Wingren
    Structural and Multidisciplinary Optimization, 2016, 54 : 783 - 793
  • [37] Shear modulus reconstruction by strain tensor measurement using lateral modulation
    Sumi, Chikayoshi
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2009, 30 (02) : 124 - 131
  • [38] A new computational model of metal plasticity based on von Mises criterion correction and tangent modulus correction
    Yang, Fengping
    Sun, Qin
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2010, 42 (04): : 804 - 810
  • [39] FINITE-ELEMENT ANALYSIS OF A FINITE-STRAIN PLASTICITY PROBLEM
    CROSE, JG
    FONG, HH
    NUCLEAR ENGINEERING AND DESIGN, 1984, 78 (03) : 389 - 404
  • [40] Tangent modulus as a function of selected factors
    Gaff, Milan
    Babiak, Marian
    COMPOSITE STRUCTURES, 2018, 202 : 436 - 446