Tangent modulus tensor in plasticity under finite strain

被引:0
|
作者
D. W. Nicholson
B. Lin
机构
[1] University of Central Florida,Institute for Computational Engineering, Department of Mechanical, Materials and Aerospace Engineering
来源
Acta Mechanica | 1999年 / 134卷
关键词
Finite Element Simulation; Incompressibility; Kronecker Product; Isotropic Hardening; Kinematic Hardening;
D O I
暂无
中图分类号
学科分类号
摘要
The tangent modulus tensor, denoted as\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document}, plays a central role in finite element simulation of nonlinear applications such as metalforming. Using Kronecker product notation, compact expressions for\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document} have been derived in Refs. [1]–[3] for hyperelastic materials with reference to the Lagrangian configuration. In the current investigation, the corresponding expression is derived for materials experiencing finite strain due to plastic flow, starting from yield and flow relations referred to the current configuration. Issues posed by the decomposition into elastic and plastic strains and by the objective stress flux are addressed. Associated and non-associated models are accommodated, as is “plastic incompressibility”. A constitutive inequality with uniqueness implications is formulated which extends the condition for “stability in the small” to finite strain. Modifications of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document} are presented which accommodate kinematic hardening. As an illustration,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document} is presented for finite torsion of a shaft, comprised of a steel described by a von Mises yield function with isotropic hardening.
引用
收藏
页码:199 / 215
页数:16
相关论文
共 50 条
  • [21] Increase in the Tangent Modulus of the Stress-Strain Diagram for a CFRP Laminate
    Severov, P. B.
    MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2019), 2019, 2176
  • [22] TANGENT MODULUS MATRIX FOR FINITE-ELEMENT ANALYSIS OF HYPERELASTIC MATERIALS
    NICHOLSON, DW
    ACTA MECHANICA, 1995, 112 (1-4) : 187 - 201
  • [23] Calculation of Tangent Modulus of Soils under Different Stress Paths
    Huang, Hua
    Huang, Min
    Ding, Jiangshu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [24] On fracture in finite strain gradient plasticity
    Martinez-Paneda, E.
    Niordson, C. F.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2016, 80 : 154 - 167
  • [25] Finite strain discrete dislocation plasticity
    Deshpande, VS
    Needleman, A
    Van der Giessen, E
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2003, 51 (11-12) : 2057 - 2083
  • [26] FINITE STRAIN PLASTICITY IN CONVECTED FRAMES
    PEGON, P
    GUELIN, P
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 22 (03) : 521 - 545
  • [27] A strain space gradient plasticity theory for finite strain
    Chambon, R
    Caillerie, D
    Tamagnini, C
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (27-29) : 2797 - 2826
  • [28] Consistent tangent matrices for density-dependent finite plasticity models
    Pérez-Foguet, A
    Rodriguez-Ferran, A
    Huerta, A
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2001, 25 (11) : 1045 - 1075
  • [29] The calculation of fourth-rank constitutive parameters of consistent tangent modulus and plastic modulus in finite element analysis
    Chen, Xiaohui
    Ma, Lianjie
    ADVANCES IN APPLIED SCIENCES AND MANUFACTURING, PTS 1 AND 2, 2014, 850-851 : 800 - 803
  • [30] Research on tangent modulus of gravel core materials under high pressure
    Zhao Hong-fen
    He Chang-rong
    Wang Chen
    Chen Ji-ping
    Zhang Xi-dao
    ROCK AND SOIL MECHANICS, 2008, 29 : 193 - 196