Tangent modulus tensor in plasticity under finite strain

被引:0
|
作者
D. W. Nicholson
B. Lin
机构
[1] University of Central Florida,Institute for Computational Engineering, Department of Mechanical, Materials and Aerospace Engineering
来源
Acta Mechanica | 1999年 / 134卷
关键词
Finite Element Simulation; Incompressibility; Kronecker Product; Isotropic Hardening; Kinematic Hardening;
D O I
暂无
中图分类号
学科分类号
摘要
The tangent modulus tensor, denoted as\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document}, plays a central role in finite element simulation of nonlinear applications such as metalforming. Using Kronecker product notation, compact expressions for\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document} have been derived in Refs. [1]–[3] for hyperelastic materials with reference to the Lagrangian configuration. In the current investigation, the corresponding expression is derived for materials experiencing finite strain due to plastic flow, starting from yield and flow relations referred to the current configuration. Issues posed by the decomposition into elastic and plastic strains and by the objective stress flux are addressed. Associated and non-associated models are accommodated, as is “plastic incompressibility”. A constitutive inequality with uniqueness implications is formulated which extends the condition for “stability in the small” to finite strain. Modifications of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document} are presented which accommodate kinematic hardening. As an illustration,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document} is presented for finite torsion of a shaft, comprised of a steel described by a von Mises yield function with isotropic hardening.
引用
收藏
页码:199 / 215
页数:16
相关论文
共 50 条
  • [1] Tangent modulus tensor in plasticity under finite strain
    Nicholson, DW
    Lin, B
    ACTA MECHANICA, 1999, 134 (3-4) : 199 - 215
  • [2] On the tangent modulus tensor in hyperelasticity
    D. W. Nicholson
    B. Lin
    Acta Mechanica, 1998, 131 : 121 - 132
  • [3] On the tangent modulus tensor in hyperelasticity
    Nicholson, DW
    Lin, B
    ACTA MECHANICA, 1998, 131 (1-2) : 121 - 132
  • [4] On the Stiffness of the Tangent Modulus Tensor in Elastoplasticity
    Nicholson, David W.
    Silvers, Thomas W.
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2011, 133 (06):
  • [5] A general spectral nonlinear elastic consistent tangent modulus tensor formula for finite element software
    Shariff, M. H. B. M.
    RESULTS IN APPLIED MATHEMATICS, 2020, 7
  • [6] Linearization for finite plasticity under dislocation-density tensor regularization
    Riccardo Scala
    Ulisse Stefanelli
    Continuum Mechanics and Thermodynamics, 2021, 33 : 179 - 208
  • [7] Linearization for finite plasticity under dislocation-density tensor regularization
    Scala, Riccardo
    Stefanelli, Ulisse
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2021, 33 (01) : 179 - 208
  • [8] Tensor Presentation of Algorithmic Tangent Modulus for Plastic-Damage Models
    Zhang Ji
    Zhang Zhong-Xian
    Huang Cal-Ping
    APPLIED MECHANICS AND MECHANICAL ENGINEERING, PTS 1-3, 2010, 29-32 : 1747 - 1752
  • [10] PROPERTIES OF ACOUSTICAL TENSOR IN FINITE PLASTICITY
    DESCATHA, Y
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (03): : 183 - 186