Global Convergence of ADMM in Nonconvex Nonsmooth Optimization

被引:5
|
作者
Yu Wang
Wotao Yin
Jinshan Zeng
机构
[1] University of California,Department of Statistics
[2] Berkeley (UCB),Department of Mathematics
[3] University of California,School of Computer and Information Engineering
[4] Los Angeles (UCLA),undefined
[5] Jiangxi Normal University,undefined
来源
关键词
ADMM; Nonconvex optimization; Augmented Lagrangian method; Block coordinate descent; Sparse optimization;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, ϕ(x0,…,xp,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (x_0,\ldots ,x_p,y)$$\end{document}, subject to coupled linear equality constraints. Our ADMM updates each of the primal variables x0,…,xp,y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0,\ldots ,x_p,y$$\end{document}, followed by updating the dual variable. We separate the variable y from xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document}’s as it has a special role in our analysis. The developed convergence guarantee covers a variety of nonconvex functions such as piecewise linear functions, ℓq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _q$$\end{document} quasi-norm, Schatten-q quasi-norm (0<q<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<1$$\end{document}), minimax concave penalty (MCP), and smoothly clipped absolute deviation penalty. It also allows nonconvex constraints such as compact manifolds (e.g., spherical, Stiefel, and Grassman manifolds) and linear complementarity constraints. Also, the x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}-block can be almost any lower semi-continuous function. By applying our analysis, we show, for the first time, that several ADMM algorithms applied to solve nonconvex models in statistical learning, optimization on manifold, and matrix decomposition are guaranteed to converge. Our results provide sufficient conditions for ADMM to converge on (convex or nonconvex) monotropic programs with three or more blocks, as they are special cases of our model. ADMM has been regarded as a variant to the augmented Lagrangian method (ALM). We present a simple example to illustrate how ADMM converges but ALM diverges with bounded penalty parameter β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. Indicated by this example and other analysis in this paper, ADMM might be a better choice than ALM for some nonconvex nonsmooth problems, because ADMM is not only easier to implement, it is also more likely to converge for the concerned scenarios.
引用
收藏
页码:29 / 63
页数:34
相关论文
共 50 条
  • [41] Cauchy Noise Removal by Nonconvex ADMM with Convergence Guarantees
    Jin-Jin Mei
    Yiqiu Dong
    Ting-Zhu Huang
    Wotao Yin
    Journal of Scientific Computing, 2018, 74 : 743 - 766
  • [42] CONVERGENCE OF NONCONVEX PNP-ADMM WITH MMSE DENOISERS
    Park, Chicago
    Shoushtari, Shirin
    Gan, Weijie
    Kamilov, Ulugbek S.
    2023 IEEE 9TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, CAMSAP, 2023, : 511 - 515
  • [43] Global attractor and limit points for nonsmooth ADMM
    Jung, Yoon Mo
    Shin, Bomi
    Yun, Sangwoon
    APPLIED MATHEMATICS LETTERS, 2022, 128
  • [44] Subgradient Method for Nonconvex Nonsmooth Optimization
    A. M. Bagirov
    L. Jin
    N. Karmitsa
    A. Al Nuaimat
    N. Sultanova
    Journal of Optimization Theory and Applications, 2013, 157 : 416 - 435
  • [45] Subgradient Method for Nonconvex Nonsmooth Optimization
    Bagirov, A. M.
    Jin, L.
    Karmitsa, N.
    Al Nuaimat, A.
    Sultanova, N.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (02) : 416 - 435
  • [46] Stabilization via nonsmooth, nonconvex optimization
    Burke, James V.
    Henrion, Didier
    Lewis, Adrian S.
    Overton, Michael L.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (11) : 1760 - 1769
  • [47] Robustness in Nonsmooth Nonconvex Optimization Problems
    F. Mashkoorzadeh
    N. Movahedian
    S. Nobakhtian
    Positivity, 2021, 25 : 701 - 729
  • [48] Robustness in Nonsmooth Nonconvex Optimization Problems
    Mashkoorzadeh, F.
    Movahedian, N.
    Nobakhtian, S.
    POSITIVITY, 2021, 25 (02) : 701 - 729
  • [49] Oracle Complexity in Nonsmooth Nonconvex Optimization
    Kornowski, Guy
    Shamir, Ohad
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [50] Oracle Complexity in Nonsmooth Nonconvex Optimization
    Kornowski, Guy
    Shamir, Ohad
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23