Global Convergence of ADMM in Nonconvex Nonsmooth Optimization

被引:5
|
作者
Yu Wang
Wotao Yin
Jinshan Zeng
机构
[1] University of California,Department of Statistics
[2] Berkeley (UCB),Department of Mathematics
[3] University of California,School of Computer and Information Engineering
[4] Los Angeles (UCLA),undefined
[5] Jiangxi Normal University,undefined
来源
关键词
ADMM; Nonconvex optimization; Augmented Lagrangian method; Block coordinate descent; Sparse optimization;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, ϕ(x0,…,xp,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (x_0,\ldots ,x_p,y)$$\end{document}, subject to coupled linear equality constraints. Our ADMM updates each of the primal variables x0,…,xp,y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0,\ldots ,x_p,y$$\end{document}, followed by updating the dual variable. We separate the variable y from xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document}’s as it has a special role in our analysis. The developed convergence guarantee covers a variety of nonconvex functions such as piecewise linear functions, ℓq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _q$$\end{document} quasi-norm, Schatten-q quasi-norm (0<q<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<1$$\end{document}), minimax concave penalty (MCP), and smoothly clipped absolute deviation penalty. It also allows nonconvex constraints such as compact manifolds (e.g., spherical, Stiefel, and Grassman manifolds) and linear complementarity constraints. Also, the x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}-block can be almost any lower semi-continuous function. By applying our analysis, we show, for the first time, that several ADMM algorithms applied to solve nonconvex models in statistical learning, optimization on manifold, and matrix decomposition are guaranteed to converge. Our results provide sufficient conditions for ADMM to converge on (convex or nonconvex) monotropic programs with three or more blocks, as they are special cases of our model. ADMM has been regarded as a variant to the augmented Lagrangian method (ALM). We present a simple example to illustrate how ADMM converges but ALM diverges with bounded penalty parameter β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. Indicated by this example and other analysis in this paper, ADMM might be a better choice than ALM for some nonconvex nonsmooth problems, because ADMM is not only easier to implement, it is also more likely to converge for the concerned scenarios.
引用
收藏
页码:29 / 63
页数:34
相关论文
共 50 条
  • [31] Two-step inertial ADMM for the solution of nonconvex nonsmooth optimization problems with nonseparable structure
    Dang, Yazheng
    Kun, Xu
    Lu, Jinglei
    Physica Scripta, 100 (02):
  • [32] Global rates of convergence for nonconvex optimization on manifolds
    Boumal, Nicolas
    Absil, P-A.
    Cartis, Coralia
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (01) : 1 - 33
  • [33] ON VARIATIONAL ASPECTS OF SOME NONCONVEX NONSMOOTH GLOBAL OPTIMIZATION PROBLEM
    NANIEWICZ, Z
    JOURNAL OF GLOBAL OPTIMIZATION, 1995, 6 (04) : 383 - 400
  • [34] An ADMM Approach of a Nonconvex and Nonsmooth Optimization Model for Low-Light or Inhomogeneous Image Segmentation
    Xing, Zheyuan
    Wu, Tingting
    Yue, Junhong
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2024, 41 (03)
  • [35] DOUGLAS-RACHFORD SPLITTING AND ADMM FOR NONCONVEX OPTIMIZATION: TIGHT CONVERGENCE RESULTS
    Themelis, Andreas
    Patrinos, Panagiotis
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 149 - 181
  • [36] Convergence for nonconvex ADMM, with applications to CT imaging
    Barber, Rina Foygel
    Sidky, Emil Y.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [37] Deterministic Nonsmooth Nonconvex Optimization
    Jordan, Michael I.
    Kornowski, Guy
    Lin, Tianyi
    Shamir, Ohad
    Zampetakis, Manolis
    THIRTY SIXTH ANNUAL CONFERENCE ON LEARNING THEORY, VOL 195, 2023, 195
  • [38] Multi-block Nonconvex Nonsmooth Proximal ADMM: Convergence and Rates Under Kurdyka-Lojasiewicz Property
    Yashtini, Maryam
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 190 (03) : 966 - 998
  • [39] GLOBAL CONVERGENCE OF SPLITTING METHODS FOR NONCONVEX COMPOSITE OPTIMIZATION
    Li, Guoyin
    Pong, Ting Kei
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (04) : 2434 - 2460
  • [40] Cauchy Noise Removal by Nonconvex ADMM with Convergence Guarantees
    Mei, Jin-Jin
    Dong, Yiqiu
    Huang, Ting-Zhu
    Yin, Wotao
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (02) : 743 - 766