Global Convergence of ADMM in Nonconvex Nonsmooth Optimization

被引:5
|
作者
Yu Wang
Wotao Yin
Jinshan Zeng
机构
[1] University of California,Department of Statistics
[2] Berkeley (UCB),Department of Mathematics
[3] University of California,School of Computer and Information Engineering
[4] Los Angeles (UCLA),undefined
[5] Jiangxi Normal University,undefined
来源
关键词
ADMM; Nonconvex optimization; Augmented Lagrangian method; Block coordinate descent; Sparse optimization;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, ϕ(x0,…,xp,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (x_0,\ldots ,x_p,y)$$\end{document}, subject to coupled linear equality constraints. Our ADMM updates each of the primal variables x0,…,xp,y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0,\ldots ,x_p,y$$\end{document}, followed by updating the dual variable. We separate the variable y from xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document}’s as it has a special role in our analysis. The developed convergence guarantee covers a variety of nonconvex functions such as piecewise linear functions, ℓq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _q$$\end{document} quasi-norm, Schatten-q quasi-norm (0<q<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<1$$\end{document}), minimax concave penalty (MCP), and smoothly clipped absolute deviation penalty. It also allows nonconvex constraints such as compact manifolds (e.g., spherical, Stiefel, and Grassman manifolds) and linear complementarity constraints. Also, the x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}-block can be almost any lower semi-continuous function. By applying our analysis, we show, for the first time, that several ADMM algorithms applied to solve nonconvex models in statistical learning, optimization on manifold, and matrix decomposition are guaranteed to converge. Our results provide sufficient conditions for ADMM to converge on (convex or nonconvex) monotropic programs with three or more blocks, as they are special cases of our model. ADMM has been regarded as a variant to the augmented Lagrangian method (ALM). We present a simple example to illustrate how ADMM converges but ALM diverges with bounded penalty parameter β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. Indicated by this example and other analysis in this paper, ADMM might be a better choice than ALM for some nonconvex nonsmooth problems, because ADMM is not only easier to implement, it is also more likely to converge for the concerned scenarios.
引用
收藏
页码:29 / 63
页数:34
相关论文
共 50 条
  • [1] Global Convergence of ADMM in Nonconvex Nonsmooth Optimization
    Wang, Yu
    Yin, Wotao
    Zeng, Jinshan
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 29 - 63
  • [2] Linearized ADMM for Nonconvex Nonsmooth Optimization With Convergence Analysis
    Liu, Qinghua
    Shen, Xinyue
    Gu, Yuantao
    IEEE ACCESS, 2019, 7 : 76131 - 76144
  • [3] Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization
    Yashtini, Maryam
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (04) : 913 - 939
  • [4] Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization
    Maryam Yashtini
    Journal of Global Optimization, 2022, 84 : 913 - 939
  • [5] Proximal ADMM for nonconvex and nonsmooth optimization
    Yang, Yu
    Jia, Qing-Shan
    Xu, Zhanbo
    Guan, Xiaohong
    Spanos, Costas J.
    AUTOMATICA, 2022, 146
  • [6] An inexact ADMM for separable nonconvex and nonsmooth optimization
    Bai, Jianchao
    Zhang, Miao
    Zhang, Hongchao
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 90 (02) : 445 - 479
  • [7] Convergence of Linear Bregman ADMM for Nonconvex and Nonsmooth Problems with Nonseparable Structure
    Chao, Miantao
    Deng, Zhao
    Jian, Jinbao
    COMPLEXITY, 2020, 2020
  • [8] Linearized ADMM for nonsmooth nonconvex optimization with nonlinear equality constraints
    El Bourkhissi, Lahcen
    Necoara, Ion
    Patrinos, Panagiotis
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 7312 - 7317
  • [9] A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees
    Curtis F.E.
    Que X.
    Mathematical Programming Computation, 2015, 7 (4) : 399 - 428
  • [10] An accelerated stochastic ADMM for nonconvex and nonsmooth finite-sum optimization
    Zeng, Yuxuan
    Wang, Zhiguo
    Bai, Jianchao
    Shen, Xiaojing
    AUTOMATICA, 2024, 163