Partial estimation of covariance matrices

被引:0
|
作者
Elizaveta Levina
Roman Vershynin
机构
[1] University of Michigan,Department of Statistics
[2] University of Michigan,Department of Mathematics
来源
关键词
62H12 (primary); 60B20 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
A classical approach to accurately estimating the covariance matrix Σ of a p-variate normal distribution is to draw a sample of size n > p and form a sample covariance matrix. However, many modern applications operate with much smaller sample sizes, thus calling for estimation guarantees in the regime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \ll p}$$\end{document}. We show that a sample of size n = O(m log6p) is sufficient to accurately estimate in operator norm an arbitrary symmetric part of Σ consisting of m ≤ n nonzero entries per row. This follows from a general result on estimating Hadamard products M · Σ, where M is an arbitrary symmetric matrix.
引用
收藏
页码:405 / 419
页数:14
相关论文
共 50 条
  • [41] Estimation of Large Dynamic Covariance Matrices: A Selective Review
    Li, Degui
    ECONOMETRICS AND STATISTICS, 2024, 29 : 16 - 30
  • [42] Estimation of Gaussian mixtures with rotationally invariant covariance matrices
    Streit, RL
    Luginbuhl, TE
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (12) : 2927 - 2944
  • [43] Efficient estimation of conditional covariance matrices for dimension reduction
    Da Veiga, Sebastien
    Loubes, Jean-Michel
    Solis, Maikol
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (09) : 4403 - 4424
  • [44] Parameter expansion for estimation of reduced rank covariance matrices
    Meyer, Karin
    GENETICS SELECTION EVOLUTION, 2008, 40 (01) : 3 - 24
  • [45] Shrinkage-to-Tapering Estimation of Large Covariance Matrices
    Chen, Xiaohui
    Wang, Z. Jane
    McKeown, Martin J.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 5640 - 5656
  • [46] Distributed Noise Covariance Matrices Estimation in Sensor Networks
    Li, Jiahong
    Ma, Nan
    Deng, Fang
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 1158 - 1163
  • [47] Adaptive estimation of covariance matrices via Cholesky decomposition
    Verzelen, Nicolas
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1113 - 1150
  • [48] Estimation of large covariance matrices with mixed factor structures
    Dai, Runyu
    Uematsu, Yoshimasa
    Matsuda, Yasumasa
    ECONOMETRICS JOURNAL, 2024, 27 (01): : 62 - 83
  • [49] REML ESTIMATION OF COVARIANCE MATRICES WITH RESTRICTED PARAMETER SPACES
    CALVIN, JA
    DYKSTRA, RL
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (429) : 321 - 329
  • [50] Eigenvalue Estimation of the Exponentially Windowed Sample Covariance Matrices
    Yazdian, Ehsan
    Gazor, Saeed
    Bastani, Mohammad Hasan
    Sharifitabar, Mohsen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (07) : 4300 - 4311