Partial estimation of covariance matrices

被引:0
|
作者
Elizaveta Levina
Roman Vershynin
机构
[1] University of Michigan,Department of Statistics
[2] University of Michigan,Department of Mathematics
来源
关键词
62H12 (primary); 60B20 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
A classical approach to accurately estimating the covariance matrix Σ of a p-variate normal distribution is to draw a sample of size n > p and form a sample covariance matrix. However, many modern applications operate with much smaller sample sizes, thus calling for estimation guarantees in the regime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \ll p}$$\end{document}. We show that a sample of size n = O(m log6p) is sufficient to accurately estimate in operator norm an arbitrary symmetric part of Σ consisting of m ≤ n nonzero entries per row. This follows from a general result on estimating Hadamard products M · Σ, where M is an arbitrary symmetric matrix.
引用
收藏
页码:405 / 419
页数:14
相关论文
共 50 条
  • [31] On estimation of covariance matrices with Kronecker product structure
    Werner, Karl
    Jansson, Magnus
    Stoica, Petre
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (02) : 478 - 491
  • [32] SHRINKAGE ESTIMATION OF HIGH DIMENSIONAL COVARIANCE MATRICES
    Chen, Yilun
    Wiesel, Ami
    Hero, Alfred O., III
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 2937 - 2940
  • [33] NOTE ON FACTOR-ANALYSIS OF PARTIAL COVARIANCE MATRICES
    MCDONALD, RP
    PSYCHOMETRIKA, 1978, 43 (01) : 121 - 121
  • [34] ESTIMATION OF NORMAL COVARIANCE AND PRECISION MATRICES WITH INCOMPLETE DATA
    KRISHNAMOORTHY, K
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (03) : 757 - 770
  • [36] ROBUST ESTIMATION OF COVARIANCE MATRICES: ADVERSARIAL CONTAMINATION AND BEYOND
    Minsker, Stanislav
    Wang, Lang
    STATISTICA SINICA, 2024, 34 (03) : 1565 - 1583
  • [37] A shrinkage approach to joint estimation of multiple covariance matrices
    Hu, Zongliang
    Hu, Zhishui
    Dong, Kai
    Tong, Tiejun
    Wang, Yuedong
    METRIKA, 2021, 84 (03) : 339 - 374
  • [38] ESTIMATION OF RANK DEFICIENT COVARIANCE MATRICES WITH KRONECKER STRUCTURE
    Castaneda, Mario H.
    Nossek, Josef A.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [39] Multi-Target Shrinkage Estimation for Covariance Matrices
    Lancewicki, Tomer
    Aladjem, Mayer
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) : 6380 - 6390
  • [40] Nonlinear shrinkage estimation of large integrated covariance matrices
    Lam, Clifford
    Feng, Phoenix
    Hu, Charlie
    BIOMETRIKA, 2017, 104 (02) : 481 - 488