Maximum likelihood gradient-based iterative estimation algorithm for a class of input nonlinear controlled autoregressive ARMA systems

被引:0
|
作者
Feiyan Chen
Feng Ding
Junhong Li
机构
[1] Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education)
[2] Nantong University,School of Electrical Engineering
来源
Nonlinear Dynamics | 2015年 / 79卷
关键词
Parameter estimation; Maximum likelihood; Stochastic gradient; Simulation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers the parameter estimation problem for an input nonlinear controlled autoregressive ARMA model. The basic idea is to combine the maximum likelihood principle and the gradient search and to present a maximum likelihood gradient-based iterative estimation algorithm. The analysis and simulation results show that the proposed algorithm can effectively estimate the parameters of the input nonlinear controlled autoregressive ARMA systems.
引用
收藏
页码:927 / 936
页数:9
相关论文
共 50 条
  • [41] Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model
    Hu, Huiyi
    Ding, Rui
    NONLINEAR DYNAMICS, 2014, 76 (01) : 777 - 784
  • [42] Least-squares-based iterative and gradient-based iterative estimation algorithms for bilinear systems
    Li, Meihang
    Liu, Ximei
    Ding, Feng
    NONLINEAR DYNAMICS, 2017, 89 (01) : 197 - 211
  • [43] Least-squares-based iterative and gradient-based iterative estimation algorithms for bilinear systems
    Meihang Li
    Ximei Liu
    Feng Ding
    Nonlinear Dynamics, 2017, 89 : 197 - 211
  • [44] Gradient-based iterative parameter estimation for Box-Jenkins systems
    Wang, Dongqing
    Yang, Guowei
    Ding, Ruifeng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) : 1200 - 1208
  • [45] The hierarchical gradient based iterative identification algorithm for multi-input output-error autoregressive systems
    Ding, Jiling
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 173 - 178
  • [46] Moving data window gradient-based iterative algorithm of combined parameter and state estimation for bilinear systems
    Liu, Siyu
    Ding, Feng
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (06) : 2413 - 2429
  • [47] Maximum likelihood forgetting stochastic gradient estimation algorithm for Hammerstein CARARMA systems
    Li, Junhong
    Gu, Juping
    Ma, Weiguo
    Ding, Rui
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 2533 - 2538
  • [48] Gradient-based simulated maximum likelihood estimation for stochastic volatility models using characteristic functions
    Peng, Yijie
    Fu, Michael C.
    Hu, Jian-Qiang
    QUANTITATIVE FINANCE, 2016, 16 (09) : 1393 - 1411
  • [49] Gradient-based and least-squares-based iterative estimation algorithms for multi-input multi-output systems
    Ding, F.
    Liu, Y.
    Bao, B.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2012, 226 (I1) : 43 - 55
  • [50] Multi-innovation Stochastic Gradient Parameter Estimation for Input Nonlinear Controlled Autoregressive Models
    Xiao, Yongsong
    Song, Guanglei
    Liao, Yuwu
    Ding, Ruifeng
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2012, 10 (03) : 639 - 643