Maximum likelihood gradient-based iterative estimation algorithm for a class of input nonlinear controlled autoregressive ARMA systems

被引:0
|
作者
Feiyan Chen
Feng Ding
Junhong Li
机构
[1] Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education)
[2] Nantong University,School of Electrical Engineering
来源
Nonlinear Dynamics | 2015年 / 79卷
关键词
Parameter estimation; Maximum likelihood; Stochastic gradient; Simulation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers the parameter estimation problem for an input nonlinear controlled autoregressive ARMA model. The basic idea is to combine the maximum likelihood principle and the gradient search and to present a maximum likelihood gradient-based iterative estimation algorithm. The analysis and simulation results show that the proposed algorithm can effectively estimate the parameters of the input nonlinear controlled autoregressive ARMA systems.
引用
收藏
页码:927 / 936
页数:9
相关论文
共 50 条
  • [11] The Gradient-Based Iterative Estimation Algorithms for Bilinear Systems with Autoregressive Noise
    Meihang Li
    Ximei Liu
    Feng Ding
    Circuits, Systems, and Signal Processing, 2017, 36 : 4541 - 4568
  • [12] The Gradient-Based Iterative Estimation Algorithms for Bilinear Systems with Autoregressive Noise
    Li, Meihang
    Liu, Ximei
    Ding, Feng
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (11) : 4541 - 4568
  • [13] Gradient Parameter Estimation of a Class of Nonlinear Systems Based on the Maximum Likelihood Principle
    Zhang, Chen
    Liu, Haibo
    Ji, Yan
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (05) : 1393 - 1404
  • [14] Gradient Parameter Estimation of a Class of Nonlinear Systems Based on the Maximum Likelihood Principle
    Chen Zhang
    Haibo Liu
    Yan Ji
    International Journal of Control, Automation and Systems, 2022, 20 : 1393 - 1404
  • [15] Maximum likelihood based multi-innovation stochastic gradient estimation for controlled autoregressive ARMA systems using the data filtering technique
    Chen, Feiyan
    Ding, Feng
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5993 - 5998
  • [16] Maximum likelihood based recursive parameter estimation for controlled autoregressive ARMA systems using the data filtering technique
    Chen, Feiyan
    Ding, Feng
    Sheng, Jie
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2015, 352 (12): : 5882 - 5896
  • [17] Maximum likelihood parameter estimation algorithm for controlled autoregressive autoregressive models
    Wang, Wei
    Li, Junhong
    Ding, Ruifeng
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (16) : 3458 - 3467
  • [18] Two-stage auxiliary model gradient-based iterative algorithm for the input nonlinear controlled autoregressive system with variable-gain nonlinearity
    Fan, Yamin
    Liu, Ximei
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (14) : 5492 - 5509
  • [19] Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique
    Wang, Cheng
    Tang, Tao
    NONLINEAR DYNAMICS, 2014, 77 (03) : 769 - 780
  • [20] Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique
    Cheng Wang
    Tao Tang
    Nonlinear Dynamics, 2014, 77 : 769 - 780