Parameterized Complexity of Minimum Membership Dominating Set

被引:0
|
作者
Akanksha Agrawal
Pratibha Choudhary
N. S. Narayanaswamy
K. K. Nisha
Vijayaragunathan Ramamoorthi
机构
[1] IIT Madras,Department of Computer Science and Engineering
[2] Czech Technical University in Prague,Faculty of Informatics
来源
Algorithmica | 2023年 / 85卷
关键词
Dominating set; Pathwidth; Vertex cover number; FPT; Split graphs; Planar bipartite graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} and an integer k, the Minimum Membership Dominating Set (MMDS) problem seeks to find a dominating set S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V$$\end{document} of G such that for each v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V$$\end{document}, |N[v]∩S|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert N[v] \cap S\vert $$\end{document} is at most k. We investigate the parameterized complexity of the problem and obtain the following results for the MMDS problem. First, we show that the MMDS problem is NP-hard even on planar bipartite graphs. Next, we show that the MMDS problem is W[1]-hard for the parameter pathwidth (and thus, for treewidth) of the input graph. Then, for split graphs, we show that the MMDS problem is W[2]-hard for the parameter k. Further, we complement the pathwidth lower bound by an FPT algorithm when parameterized by the vertex cover number of input graph. In particular, we design a 2O(vc)|V|O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}({\textbf {v}}{} {\textbf {c}})} \vert V\vert ^{{\mathcal {O}}(1)}$$\end{document} time algorithm for the MMDS problem where vc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{vc}$$\end{document} is the vertex cover number of the input graph. Finally, we show that the running time lower bound based on ETH is tight for the vertex cover parameter.
引用
收藏
页码:3430 / 3452
页数:22
相关论文
共 50 条
  • [41] The Parameterized Complexity of Terminal Monitoring Set
    Aravind, N. R.
    Saxena, Roopam
    WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2024, 2024, 14549 : 76 - 90
  • [42] The Parameterized Complexity of Terminal Monitoring Set
    Aravind, N.R. (aravind@cse.iith.ac.in), 1600, Springer Science and Business Media Deutschland GmbH (14549 LNCS):
  • [43] On the Parameterized Complexity of Compact Set Packing
    Gadekar, Ameet
    ALGORITHMICA, 2024, 86 (11) : 3579 - 3597
  • [44] Maximum graphs with a unique minimum dominating set
    Fischermann, M
    Rautenbach, D
    Volkmann, L
    DISCRETE MATHEMATICS, 2003, 260 (1-3) : 197 - 203
  • [45] Statistical Mechanics of the Minimum Dominating Set Problem
    Zhao, Jin-Hua
    Habibulla, Yusupjan
    Zhou, Hai-Jun
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (05) : 1154 - 1174
  • [46] Minimum Distance Dominating Set in Complex Networks
    Wu, Kaiwen
    Ren, Baoan
    Liu, Hongfu
    Chen, Jing
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1046 - 1050
  • [47] Minimum edge blocker dominating set problem
    Pajouh, Foad Mahdavi
    Walteros, Jose L.
    Boginski, Vladimir
    Pasiliao, Eduardo L.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 247 (01) : 16 - 26
  • [48] Parameterized edge dominating set in graphs with degree bounded by 3
    Xiao, Mingyu
    Nagamochi, Hiroshi
    THEORETICAL COMPUTER SCIENCE, 2013, 508 : 2 - 15
  • [49] MINIMUM DOMINATING SET FOR THE PRISM GRAPH FAMILY
    Esther, Jebisha S.
    Vivik, Veninstine J.
    MATHEMATICS IN APPLIED SCIENCES AND ENGINEERING, 2023, 4 (01): : 30 - 39
  • [50] An Exact Algorithm for the Minimum Dominating Set Problem
    Jiang, Hua
    Zheng, Zhifei
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 5604 - 5612