Parameterized Complexity of Minimum Membership Dominating Set

被引:0
|
作者
Akanksha Agrawal
Pratibha Choudhary
N. S. Narayanaswamy
K. K. Nisha
Vijayaragunathan Ramamoorthi
机构
[1] IIT Madras,Department of Computer Science and Engineering
[2] Czech Technical University in Prague,Faculty of Informatics
来源
Algorithmica | 2023年 / 85卷
关键词
Dominating set; Pathwidth; Vertex cover number; FPT; Split graphs; Planar bipartite graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} and an integer k, the Minimum Membership Dominating Set (MMDS) problem seeks to find a dominating set S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V$$\end{document} of G such that for each v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V$$\end{document}, |N[v]∩S|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert N[v] \cap S\vert $$\end{document} is at most k. We investigate the parameterized complexity of the problem and obtain the following results for the MMDS problem. First, we show that the MMDS problem is NP-hard even on planar bipartite graphs. Next, we show that the MMDS problem is W[1]-hard for the parameter pathwidth (and thus, for treewidth) of the input graph. Then, for split graphs, we show that the MMDS problem is W[2]-hard for the parameter k. Further, we complement the pathwidth lower bound by an FPT algorithm when parameterized by the vertex cover number of input graph. In particular, we design a 2O(vc)|V|O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}({\textbf {v}}{} {\textbf {c}})} \vert V\vert ^{{\mathcal {O}}(1)}$$\end{document} time algorithm for the MMDS problem where vc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{vc}$$\end{document} is the vertex cover number of the input graph. Finally, we show that the running time lower bound based on ETH is tight for the vertex cover parameter.
引用
收藏
页码:3430 / 3452
页数:22
相关论文
共 50 条
  • [31] The probabilistic minimum dominating set problem
    Boria, Nicolas
    Murat, Cecile
    Paschos, Vangelis Th.
    DISCRETE APPLIED MATHEMATICS, 2018, 234 : 93 - 113
  • [32] Approximating a Minimum Dominating Set by Purification
    Inza, Ernesto Parra
    Vakhania, Nodari
    Almira, Jose Maria Sigarreta
    Hernandez-Aguilar, Jose Alberto
    ALGORITHMS, 2024, 17 (06)
  • [33] ON APPROXIMATING THE MINIMUM INDEPENDENT DOMINATING SET
    IRVING, RW
    INFORMATION PROCESSING LETTERS, 1991, 37 (04) : 197 - 200
  • [34] ON FINDING A MINIMUM DOMINATING SET IN A TOURNAMENT
    MEGIDDO, N
    VISHKIN, U
    THEORETICAL COMPUTER SCIENCE, 1988, 61 (2-3) : 307 - 316
  • [35] An improved algorithm for parameterized edge dominating set problem
    Iwaide, Ken
    Nagamochi, Hiroshi
    Journal of Graph Algorithms and Applications, 2016, 20 (01): : 23 - 58
  • [36] New Parameterized Algorithms for the Edge Dominating Set Problem
    Xiao, Mingyu
    Kloks, Ton
    Poon, Sheung-Hung
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2011, 2011, 6907 : 604 - 615
  • [37] New parameterized algorithms for the edge dominating set problem
    Xiao, Mingyu
    Kloks, Ton
    Poon, Sheung-Hung
    THEORETICAL COMPUTER SCIENCE, 2013, 511 : 147 - 158
  • [38] The Quantum Complexity of Set Membership
    Algorithmica, 2002, 34 : 462 - 479
  • [39] The quantum complexity of set membership
    Radhakrishnan, J
    Sen, P
    Venkatesh, S
    41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, : 554 - 562
  • [40] The quantum complexity of set membership
    Radhakrishnan, J
    Sen, P
    Venkatesh, S
    ALGORITHMICA, 2002, 34 (04) : 462 - 479