Parameterized Complexity of Minimum Membership Dominating Set

被引:0
|
作者
Akanksha Agrawal
Pratibha Choudhary
N. S. Narayanaswamy
K. K. Nisha
Vijayaragunathan Ramamoorthi
机构
[1] IIT Madras,Department of Computer Science and Engineering
[2] Czech Technical University in Prague,Faculty of Informatics
来源
Algorithmica | 2023年 / 85卷
关键词
Dominating set; Pathwidth; Vertex cover number; FPT; Split graphs; Planar bipartite graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} and an integer k, the Minimum Membership Dominating Set (MMDS) problem seeks to find a dominating set S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V$$\end{document} of G such that for each v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V$$\end{document}, |N[v]∩S|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert N[v] \cap S\vert $$\end{document} is at most k. We investigate the parameterized complexity of the problem and obtain the following results for the MMDS problem. First, we show that the MMDS problem is NP-hard even on planar bipartite graphs. Next, we show that the MMDS problem is W[1]-hard for the parameter pathwidth (and thus, for treewidth) of the input graph. Then, for split graphs, we show that the MMDS problem is W[2]-hard for the parameter k. Further, we complement the pathwidth lower bound by an FPT algorithm when parameterized by the vertex cover number of input graph. In particular, we design a 2O(vc)|V|O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}({\textbf {v}}{} {\textbf {c}})} \vert V\vert ^{{\mathcal {O}}(1)}$$\end{document} time algorithm for the MMDS problem where vc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{vc}$$\end{document} is the vertex cover number of the input graph. Finally, we show that the running time lower bound based on ETH is tight for the vertex cover parameter.
引用
收藏
页码:3430 / 3452
页数:22
相关论文
共 50 条
  • [1] Parameterized Complexity of Minimum Membership Dominating Set
    Agrawal, Akanksha
    Choudhary, Pratibha
    Narayanaswamy, N. S.
    Nisha, K. K.
    Ramamoorthi, Vijayaragunathan
    ALGORITHMICA, 2023, 85 (11) : 3430 - 3452
  • [2] On the Parameterized Complexity of Approximating Dominating Set
    Karthik, C. S.
    Laekhanukit, Bundit
    Manurangsi, Pasin
    JOURNAL OF THE ACM, 2019, 66 (05)
  • [3] On the Parameterized Complexity of Approximating Dominating Set
    Karthik, C. S.
    Laekhanukit, Bundit
    Manurangsi, Pasin
    STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 1283 - 1296
  • [4] NONBLOCKER: Parameterized algorithmics for MINIMUM DOMINATING SET
    Dehne, F
    Fellows, M
    Fernau, H
    Prieto, E
    Rosamond, F
    SOFSEM 2006: THEORY AND PRACTICE OF COMPUTER SCIENCE, PROCEEDINGS, 2006, 3831 : 237 - 245
  • [5] A note on the complexity of minimum dominating set
    Grandoni, Fabrizio
    JOURNAL OF DISCRETE ALGORITHMS, 2006, 4 (02) : 209 - 214
  • [6] The Parameterized Complexity of Dominating Set and Friends Revisited for Structured Graphs
    Misra, Neeldhara
    Rathi, Piyush
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2019, 11532 : 299 - 310
  • [7] Parameterized dominating set problem in chordal graphs: complexity and lower bound
    Liu, Chunmei
    Song, Yinglei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 18 (01) : 87 - 97
  • [8] Parameterized dominating set problem in chordal graphs: complexity and lower bound
    Chunmei Liu
    Yinglei Song
    Journal of Combinatorial Optimization, 2009, 18 : 87 - 97
  • [9] Parameterized complexity of dominating set variants in almost cluster and split graphs
    Goyal, Dishant
    Jacob, Ashwin
    Kumar, Kaushtubh
    Majumdar, Diptapriyo
    Raman, Venkatesh
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2025, 150
  • [10] Parameterized complexity and inapproximability of dominating set problem in chordal and near chordal graphs
    Chunmei Liu
    Yinglei Song
    Journal of Combinatorial Optimization, 2011, 22 : 684 - 698