Construction of optimal constant-dimension subspace codes

被引:0
|
作者
Wayne Pullan
Xin-Wen Wu
Zihui Liu
机构
[1] Griffith University,School of Information and Communication Technology
[2] Beijing Institute of Technology,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2016年 / 31卷
关键词
Subspace codes; Optimisation; Maximum independent set; Big graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A subspace code of length n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} over the finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} is a collection of subspaces of the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional vector space Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q^n$$\end{document}. Subspace codes are applied to a number of areas such as noncoherent linear network coding and linear authentication. A challenge in the research of subspace codes is to construct large codes with prescribed code parameters, such that the codes have the maximum number of codewords, or the number of codewords is larger than that of previously known codes. In the literature, a general method was proposed for the construction of large constant-dimension subspace codes based on integer linear programming. In this work, making use of an optimization approach for finding the maximum independent set of a graph, a procedure is developed for constructing large subspace codes. The procedure, in some cases, outperforms the existing approach based on integer linear programming, and finds new subspace codes that have more codewords than existing codes.
引用
收藏
页码:1709 / 1719
页数:10
相关论文
共 50 条
  • [41] Cyclic constant dimension subspace codes via the sum of Sidon spaces
    Yun Li
    Hongwei Liu
    Designs, Codes and Cryptography, 2023, 91 : 1193 - 1207
  • [42] New constant dimension subspace codes from block inserting constructions
    Lao, Huimin
    Chen, Hao
    Tan, Xiaoqing
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (01): : 87 - 99
  • [43] Cyclic constant dimension subspace codes via the sum of Sidon spaces
    Li, Yun
    Liu, Hongwei
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 91 (4) : 1193 - 1207
  • [44] Improvement to the sunflower bound for a class of equidistant constant dimension subspace codes
    D. Bartoli
    A.-E. Riet
    L. Storme
    P. Vandendriessche
    Journal of Geometry, 2021, 112
  • [45] ON THE CONSTRUCTION OF OPTIMAL LINEAR CODES OF DIMENSION FOUR
    Kato, Atsuya
    Maruta, Tatsuya
    Nomura, Keita
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1237 - 1252
  • [46] Lifted Codes with Construction of Echelon-Ferrers for Constant Dimension Codes
    Niu, Yongfeng
    Wang, Xuan
    MATHEMATICS, 2024, 12 (20)
  • [48] Generalized bilateral multilevel construction for constant dimension codes
    Hong, Xiaoqin
    Cao, Xiwang
    Luo, Gaojun
    DESIGNS CODES AND CRYPTOGRAPHY, 2025, 93 (01) : 197 - 225
  • [49] Construction of optimal uniform constant composition codes
    Bastos, Gustavo Terra
    Duarte-Gonzalez, Mario E.
    ELECTRONICS LETTERS, 2019, 55 (22) : 1182 - +
  • [50] Diameter in linear time for constant-dimension median graphs
    Berge, Pierre
    Habib, Michel
    PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 97 - 107