Construction of optimal constant-dimension subspace codes

被引:0
|
作者
Wayne Pullan
Xin-Wen Wu
Zihui Liu
机构
[1] Griffith University,School of Information and Communication Technology
[2] Beijing Institute of Technology,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2016年 / 31卷
关键词
Subspace codes; Optimisation; Maximum independent set; Big graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A subspace code of length n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} over the finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} is a collection of subspaces of the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional vector space Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q^n$$\end{document}. Subspace codes are applied to a number of areas such as noncoherent linear network coding and linear authentication. A challenge in the research of subspace codes is to construct large codes with prescribed code parameters, such that the codes have the maximum number of codewords, or the number of codewords is larger than that of previously known codes. In the literature, a general method was proposed for the construction of large constant-dimension subspace codes based on integer linear programming. In this work, making use of an optimization approach for finding the maximum independent set of a graph, a procedure is developed for constructing large subspace codes. The procedure, in some cases, outperforms the existing approach based on integer linear programming, and finds new subspace codes that have more codewords than existing codes.
引用
收藏
页码:1709 / 1719
页数:10
相关论文
共 50 条
  • [31] Construction of Constant Dimension Codes in Some Cases
    Gao, You
    Zhao, Liyun
    ARS COMBINATORIA, 2020, 149 : 55 - 67
  • [32] BILATERAL MULTILEVEL CONSTRUCTION OF CONSTANT DIMENSION CODES
    Yu, Shuhui
    Ji, Lijun
    Liu, Shuangqing
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (04) : 1165 - 1183
  • [33] A construction of optimal constant composition codes
    Ding, Cunsheng
    Yin, Jianxing
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 40 (02) : 157 - 165
  • [34] Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6
    Heinlein, Daniel
    Honold, Thomas
    Kiermaier, Michael
    Kurz, Sascha
    Wassermann, Alfred
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (2-3) : 375 - 391
  • [35] A Construction of Optimal Constant Composition Codes
    Cunsheng Ding
    Jianxing Yin
    Designs, Codes and Cryptography, 2006, 40 : 157 - 165
  • [36] Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6
    Daniel Heinlein
    Thomas Honold
    Michael Kiermaier
    Sascha Kurz
    Alfred Wassermann
    Designs, Codes and Cryptography, 2019, 87 : 375 - 391
  • [37] Construction of constant dimension codes via improved inserting construction
    Yongfeng Niu
    Qin Yue
    Daitao Huang
    Applicable Algebra in Engineering, Communication and Computing, 2023, 34 : 1045 - 1062
  • [38] Construction of constant dimension codes via improved inserting construction
    Niu, Yongfeng
    Yue, Qin
    Huang, Daitao
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2021, 34 (6) : 1045 - 1062
  • [39] Improvement to the sunflower bound for a class of equidistant constant dimension subspace codes
    Bartoli, D.
    Riet, A. -E.
    Storme, L.
    Vandendriessche, P.
    JOURNAL OF GEOMETRY, 2021, 112 (01)
  • [40] New constant dimension subspace codes from block inserting constructions
    Huimin Lao
    Hao Chen
    Xiaoqing Tan
    Cryptography and Communications, 2022, 14 : 87 - 99