Construction of optimal constant-dimension subspace codes

被引:0
|
作者
Wayne Pullan
Xin-Wen Wu
Zihui Liu
机构
[1] Griffith University,School of Information and Communication Technology
[2] Beijing Institute of Technology,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2016年 / 31卷
关键词
Subspace codes; Optimisation; Maximum independent set; Big graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A subspace code of length n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} over the finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} is a collection of subspaces of the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional vector space Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q^n$$\end{document}. Subspace codes are applied to a number of areas such as noncoherent linear network coding and linear authentication. A challenge in the research of subspace codes is to construct large codes with prescribed code parameters, such that the codes have the maximum number of codewords, or the number of codewords is larger than that of previously known codes. In the literature, a general method was proposed for the construction of large constant-dimension subspace codes based on integer linear programming. In this work, making use of an optimization approach for finding the maximum independent set of a graph, a procedure is developed for constructing large subspace codes. The procedure, in some cases, outperforms the existing approach based on integer linear programming, and finds new subspace codes that have more codewords than existing codes.
引用
收藏
页码:1709 / 1719
页数:10
相关论文
共 50 条
  • [1] Construction of optimal constant-dimension subspace codes
    Pullan, Wayne
    Wu, Xin-Wen
    Liu, Zihui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (04) : 1709 - 1719
  • [2] Generalized Linkage Construction for Constant-Dimension Codes
    Heinlein, Daniel
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (02) : 705 - 715
  • [3] Construction and Covering Properties of Constant-Dimension Codes
    Gadouleau, Maximilien
    Yan, Zhiyuan
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 2221 - 2225
  • [4] New Lower Bounds for Binary Constant-Dimension Subspace Codes
    Braun, Michael
    Ostergard, Patric R. J.
    Wassermann, Alfred
    EXPERIMENTAL MATHEMATICS, 2018, 27 (02) : 179 - 183
  • [5] New Constant-Dimension Subspace Codes from Maximum Rank Distance Codes
    Xu, Liqing
    Chen, Hao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (09) : 6315 - 6319
  • [6] Parallel sub-code construction for constant-dimension codes
    He, Xianmang
    Chen, Yindong
    Zhang, Zusheng
    Zhou, Kunxiao
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (12) : 2991 - 3001
  • [7] Parallel sub-code construction for constant-dimension codes
    Xianmang He
    Yindong Chen
    Zusheng Zhang
    Kunxiao Zhou
    Designs, Codes and Cryptography, 2022, 90 : 2991 - 3001
  • [8] Constant-Rank Codes and Their Connection to Constant-Dimension Codes
    Gadouleau, Maximilien
    Yan, Zhiyuan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (07) : 3207 - 3216
  • [9] Improving the Linkage Construction With Echelon-Ferrers for Constant-Dimension Codes
    He, Xianmang
    Chen, Yindong
    Zhang, Zusheng
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (09) : 1875 - 1879
  • [10] Construction of Constant Dimension Subspace Codes by Modifying Linkage Construction
    Li, Fagang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (05) : 2760 - 2764