Prediction of p53 mutation status in rectal cancer patients based on magnetic resonance imaging-based nomogram: a study of machine learning

被引:0
|
作者
Xia Zhong
Jiaxuan Peng
Zhenyu Shu
Qiaowei Song
Dongxue Li
机构
[1] The First Clinical Medical College,Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital
[2] Zhejiang Chinese Medical University,undefined
[3] Jinzhou Medical University,undefined
[4] Affiliated People’s Hospital,undefined
[5] Hangzhou Medical College,undefined
来源
关键词
Nomogram; Rectal cancer; Machine learning; p53 gene; Magnetic resonance imaging;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Research progress on deep learning in magnetic resonance imaging-based diagnosis and treatment of prostate cancer: a review on the current status and perspectives
    He, Mingze
    Cao, Yu
    Chi, Changliang
    Yang, Xinyi
    Ramin, Rzayev
    Wang, Shuowen
    Yang, Guodong
    Mukhtorov, Otabek
    Zhang, Liqun
    Kazantsev, Anton
    Enikeev, Mikhail
    Hu, Kebang
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [42] Individualized magnetic resonance imaging-based neoadjuvant chemoradiation for middle and lower rectal carcinoma
    Hermanek, P.
    Hohenberger, W.
    Fietkau, R.
    Roedel, C.
    COLORECTAL DISEASE, 2011, 13 (01) : 39 - 47
  • [43] Current magnetic resonance imaging-based diagnostic strategies for prostate cancer
    Inoue, Toru
    Shin, Toshitaka
    INTERNATIONAL JOURNAL OF UROLOGY, 2023, 30 (12) : 1078 - 1086
  • [44] Magnetic resonance imaging-based lymph node radiomics for predicting the metastasis of evaluable lymph nodes in rectal cancer
    Ye, Yong-Xia
    Yang, Liu
    Kang, Zheng
    Wang, Mei-Qin
    Xie, Xiao-Dong
    Lou, Ke-Xin
    Bao, Jun
    Du, Mei
    Li, Zhe-Xuan
    WORLD JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2024, 16 (05) : 1849 - 1860
  • [45] Conditional generative adversarial network driven radiomic prediction of mutation status based on magnetic resonance imaging of breast cancer
    Zi Huai Huang
    Lianghong Chen
    Yan Sun
    Qian Liu
    Pingzhao Hu
    Journal of Translational Medicine, 22
  • [46] Conditional generative adversarial network driven radiomic prediction of mutation status based on magnetic resonance imaging of breast cancer
    Huang, Zi Huai
    Chen, Lianghong
    Sun, Yan
    Liu, Qian
    Hu, Pingzhao
    JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [47] Superfast Magnetic Resonance Imaging-based Diagnostic Pathway for Prostate Cancer
    Pereira, Leonor Jane Paulino
    Heetman, Joris G.
    Bergh, Roderick C. N.
    van Melick, Harm H. E.
    EUROPEAN UROLOGY OPEN SCIENCE, 2022, 46 : 30 - 32
  • [48] A Magnetic Resonance Imaging-Based Prediction Model for Prostate Biopsy Risk Stratification
    Mehralivand, Sherif
    Shih, Joanna H.
    Rais-Bahrami, Soroush
    Oto, Aytekin
    Bednarova, Sandra
    Nix, Jeffrey W.
    Thomas, John V.
    Gordetsky, Jennifer B.
    Gaur, Sonia
    Harmon, Stephanie A.
    Siddiqui, Mohummad Minhaj
    Merino, Maria J.
    Parnes, Howard L.
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    JAMA ONCOLOGY, 2018, 4 (05) : 678 - 685
  • [49] A magnetic resonance imaging-based prediction model for prostate biopsy risk stratification
    Meyerson, Brian L.
    Streicher, Justin
    Sidana, Abhinav
    THERAPEUTIC ADVANCES IN UROLOGY, 2018, 10 (11) : 357 - 358
  • [50] Clinical variables and magnetic resonance imaging-based radiomics predict human papillomavirus status of oropharyngeal cancer
    Bos, Paula
    van den Brekel, Michiel W. M.
    Gouw, Zeno A. R.
    Al-Mamgani, Abrahim
    Waktola, Selam
    Aerts, Hugo J. W. L.
    Beets-Tan, Regina G. H.
    Castelijns, Jonas A.
    Jasperse, Bas
    HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2021, 43 (02): : 485 - 495