Prediction of p53 mutation status in rectal cancer patients based on magnetic resonance imaging-based nomogram: a study of machine learning

被引:0
|
作者
Xia Zhong
Jiaxuan Peng
Zhenyu Shu
Qiaowei Song
Dongxue Li
机构
[1] The First Clinical Medical College,Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital
[2] Zhejiang Chinese Medical University,undefined
[3] Jinzhou Medical University,undefined
[4] Affiliated People’s Hospital,undefined
[5] Hangzhou Medical College,undefined
来源
关键词
Nomogram; Rectal cancer; Machine learning; p53 gene; Magnetic resonance imaging;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Smart magnetic resonance imaging-based theranostics for cancer
    Brito, Beatriz
    Price, Thomas W.
    Gallo, Juan
    Banobre-Lopez, Manuel
    Stasiuk, Graeme J.
    THERANOSTICS, 2021, 11 (18): : 8706 - 8737
  • [22] Three-dimensional magnetic resonance imaging-based statistical shape analysis and machine learning-based prediction of patellofemoral instability
    Nagawa, Keita
    Inoue, Kaiji
    Hara, Yuki
    Shimizu, Hirokazu
    Tsuchihashi, Saki
    Matsuura, Koichiro
    Kozawa, Eito
    Sugita, Naoki
    Niitsu, Mamoru
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [23] Prediction of bone invasion of oral squamous cell carcinoma using a magnetic resonance imaging-based machine learning model
    Ozturk, Elif Meltem Aslan
    Unsal, Guerkan
    Erisir, Ferhat
    Orhan, Kaan
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2024, 281 (12) : 6585 - 6597
  • [24] Prediction by a multiparametric magnetic resonance imaging-based radiomics signature model of disease-free survival in patients with rectal cancer treated by surgery
    Mao, Jiwei
    Ye, Wanli
    Ma, Weili
    Liu, Jianjiang
    Zhong, Wangyan
    Yuan, Hang
    Li, Ting
    Guan, Le
    Wu, Dongping
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [25] Magnetic Resonance Imaging-Based Radiomics Nomogram for Prediction of the Histopathological Grade of Soft Tissue Sarcomas: A Two-Center Study
    Yan, Ruixin
    Hao, Dapeng
    Li, Jie
    Liu, Jihua
    Hou, Feng
    Chen, Haisong
    Duan, Lisha
    Huang, Chencui
    Wang, Hexiang
    Yu, Tengbo
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (06) : 1683 - 1696
  • [26] External validation of novel magnetic resonance imaging-based models for prostate cancer prediction
    Puellen, Lukas
    Radtke, Jan P.
    Wiesenfarth, Manuel
    Roobol, Monique J.
    Verbeek, Jan F. M.
    Wetter, Axel
    Guberina, Nika
    Pandey, Abhishek
    Huettenbrink, Clemens
    Tschirdewahn, Stephan
    Pahernik, Sascha
    Hadaschik, Boris A.
    Distler, Florian A.
    BJU INTERNATIONAL, 2020, 125 (03) : 407 - 416
  • [27] Machine Learning-Based Radiomics Nomogram Using Magnetic Resonance Images for Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer Patients
    Chen, Shujun
    Shu, Zhenyu
    Li, Yongfeng
    Chen, Bo
    Tang, Lirong
    Mo, Wenju
    Shao, Guoliang
    Shao, Feng
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [28] Development and internal validation of a side-specific, multiparametric magnetic resonance imaging-based nomogram for the prediction of extracapsular extension of prostate cancer
    Martini, Alberto
    Gupta, Akriti
    Lewis, Sara C.
    Cumarasamy, Shivaram
    Haines, Kenneth G., III
    Briganti, Alberto
    Montorsi, Francesco
    Tewari, Ashutosh K.
    BJU INTERNATIONAL, 2018, 122 (06) : 1025 - 1033
  • [29] Magnetic Resonance Imaging-Based Radiomics Nomogram to Predict Intraoperative Hemorrhage of Placenta Previa
    Lu, Yanli
    Zhou, Liping
    Wang, Xiaoyan
    Li, Yongmei
    Chen, Dali
    Gu, Yidong
    Yue, Yongfei
    AMERICAN JOURNAL OF PERINATOLOGY, 2024, 41 : e2174 - e2183
  • [30] Editorial for "Magnetic Resonance Imaging-Based Radiomics Nomogram for Prediction of the Histopathological Grade of Soft Tissue Sarcomas: A Two-Center Study"
    Hanrahan, Christopher J.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (06) : 1697 - 1698