On residually finite groups satisfying an Engel type identity

被引:0
|
作者
Danilo Silveira
机构
[1] Universidade Federal de Goiás,Departamento de Matemática
来源
关键词
Engel element; Engel groups; Residually finite groups; Locally graded groups; Lie algebras; 20F45; 20E26; 20F40;
D O I
暂无
中图分类号
学科分类号
摘要
Let n, q be positive integers. We show that if G is a finitely generated residually finite group satisfying the identity [x,nyq]≡1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[x,_ny^q]\equiv 1$$\end{document}, then there exists a function f(n) such that G has a nilpotent subgroup of finite index of class at most f(n). We also extend this result to locally graded groups.
引用
收藏
页码:171 / 176
页数:5
相关论文
共 50 条