共 50 条
On residually finite groups satisfying an Engel type identity
被引:0
|作者:
Danilo Silveira
机构:
[1] Universidade Federal de Goiás,Departamento de Matemática
来源:
关键词:
Engel element;
Engel groups;
Residually finite groups;
Locally graded groups;
Lie algebras;
20F45;
20E26;
20F40;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let n, q be positive integers. We show that if G is a finitely generated residually finite group satisfying the identity [x,nyq]≡1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[x,_ny^q]\equiv 1$$\end{document}, then there exists a function f(n) such that G has a nilpotent subgroup of finite index of class at most f(n). We also extend this result to locally graded groups.
引用
收藏
页码:171 / 176
页数:5
相关论文