On residually finite groups satisfying an Engel type identity

被引:0
|
作者
Danilo Silveira
机构
[1] Universidade Federal de Goiás,Departamento de Matemática
来源
关键词
Engel element; Engel groups; Residually finite groups; Locally graded groups; Lie algebras; 20F45; 20E26; 20F40;
D O I
暂无
中图分类号
学科分类号
摘要
Let n, q be positive integers. We show that if G is a finitely generated residually finite group satisfying the identity [x,nyq]≡1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[x,_ny^q]\equiv 1$$\end{document}, then there exists a function f(n) such that G has a nilpotent subgroup of finite index of class at most f(n). We also extend this result to locally graded groups.
引用
收藏
页码:171 / 176
页数:5
相关论文
共 50 条
  • [21] On groups satisfying a symmetric Engel word
    Farrokhi D. G M.
    Moghaddam M.R.R.
    Ricerche di Matematica, 2016, 65 (1) : 15 - 20
  • [22] Engel groups with an identity
    Shumyatsky, Pavel
    Tortora, Antonio
    Tota, Maria
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (01) : 1 - 7
  • [23] On groups of automorphisms of residually finite groups
    Dardano, U
    Eick, B
    Menth, M
    JOURNAL OF ALGEBRA, 2000, 231 (02) : 561 - 573
  • [24] Group algebras with units satisfying an Engel identity
    Riley D.M.
    Rendiconti del Circolo Matematico di Palermo, 2000, 49 (3) : 540 - 544
  • [25] A Menon-type identity in residually finite Dedekind domains
    Miguel, C.
    JOURNAL OF NUMBER THEORY, 2016, 164 : 43 - 51
  • [26] Commutators in residually finite groups
    Pavel Shumyatsky
    Israel Journal of Mathematics, 2011, 182 : 149 - 156
  • [27] GROUPS OF EXPONENT FOUR SATISFYING AN ENGEL CONDITION
    QUINTANA, RB
    WRIGHT, CRB
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 44 (02) : 701 - 705
  • [28] RESIDUALLY FINITE-GROUPS
    SEGAL, D
    LECTURE NOTES IN MATHEMATICS, 1990, 1456 : 85 - 95
  • [29] Commutators in Residually Finite Groups
    Pavel Shumyatsky
    Monatshefte für Mathematik, 2002, 137 : 157 - 165
  • [30] Commutators in residually finite groups
    Shumyatsky, P
    MONATSHEFTE FUR MATHEMATIK, 2002, 137 (02): : 157 - 165