Interacting Tsallis agegraphic dark energy in DGP braneworld cosmology

被引:0
|
作者
Zahra Feizi Mangoudehi
机构
[1] University of Guilan,Department of Physics
来源
关键词
TADE; Interaction; DGP braneworld cosmology; Statefinder diagnostic; The ; plane; Observational constrains; Turning point;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to study the Tsallis agegraphic dark energy with an interaction term between dark energy and dark matter in the DGP brane-world scenario. For this, we assume some initial conditions to obtain the dark energy density, deceleration, dark energy EoS, and total EoS parameters. Then, we analyze the statefinder parameters, ω′DE−ωDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega '{}_{DE}-\omega _{DE}$\end{document} plots, and classical stability features of the model. The results state that the deceleration parameter provides the phase transition from decelerated to accelerated phase. The ωDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{DE}$\end{document} graphs show the phantom behavior, while the ωtot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{tot}$\end{document} exhibits the quintessence and phantom during the evolution of the Universe. Following the graphs, the Statefinder analysis shows the quintessence behavior of the model for the past and present. However, it tends to the ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document} in the following era. The ω′DE−ωDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega '{}_{DE}-\omega _{DE}$\end{document} plot indicates the thawing or freezing area depending on the type of era and different values of b2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b^{2}$\end{document}, δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta $\end{document}, and m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m$\end{document}. By the square of the sound speed, we see the model is stable in the past, stable or unstable at the current time, and unstable in the future for selected values of b2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b^{2}$\end{document}, δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta $\end{document}, and m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m$\end{document}. To test the model, we use the recent Hubble data. We also employ Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to compare the model with the ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document} as the reference model. In addition, we test the model using the H−z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H-z$\end{document} plot, and we see a turning point in the future time. The results from the best fit values for the ωtot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{tot}$\end{document} plot emphasize that the Universe is in the quintessence region in the current time. It will enter the phantom phase, and then it will approach the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda $\end{document} state in the future. But, the ωDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{DE}$\end{document} always stays on the phantom region. The model is unstable in the present and progressive era.
引用
收藏
相关论文
共 50 条
  • [31] Restoring New Agegraphic Dark Energy in RS II Braneworld
    Jamil, Mubasher
    Karami, K.
    Sheykhi, A.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (10) : 3069 - 3077
  • [32] INCONSISTENCES IN INTERACTING AGEGRAPHIC DARK ENERGY MODELS
    Sun, Cheng-Yi
    Song, Yu
    MODERN PHYSICS LETTERS A, 2011, 26 (40) : 3055 - 3066
  • [33] Interacting entropy-corrected new agegraphic dark energy in Brans-Dicke cosmology
    Karami, K.
    Sheykhi, A.
    Jamil, M.
    Azarmi, Z.
    Soltanzadeh, M. M.
    GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (01) : 27 - 39
  • [34] Interacting agegraphic tachyon model of dark energy
    Sheykhi, Ahmad
    PHYSICS LETTERS B, 2010, 682 (4-5) : 329 - 333
  • [35] Theoretical Analysis on QCD Ghost Dark Energy in the DGP Braneworld
    Zhang, Sibo
    Yang, Weiqiang
    GRAVITATION & COSMOLOGY, 2025, 31 (01): : 82 - 98
  • [36] New holographic dark energy model inspired by the DGP braneworld
    Sheykhi, A.
    Dehahani, M. H.
    Ghaffari, S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (02):
  • [37] Theoretical analysis on the Barrow holographic dark energy in the DGP braneworld
    Zhao, Chenchen
    Qi, Yannan
    Yang, Weiqiang
    Jiang, Bo
    Feng, Wenyu
    Wu, Yabo
    MODERN PHYSICS LETTERS A, 2022, 37 (39-40)
  • [38] Bulk scalar field in DGP braneworld cosmology
    ul Haq Ansari, Rizwan
    Suresh, P. K.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2007, (09):
  • [39] Cosmology of the interacting Tsallis holographic dark energy in f(R,T) gravity framework
    Sultana, Sanjeeda
    Ranjit, Chayan
    Chattopadhyay, Surajit
    Guedekli, Ertan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2024, 33 (09N10):
  • [40] Tsallis holographic dark energy in the brane cosmology
    Ghaffari, S.
    Moradpour, H.
    Bezerra, Valdir B.
    Morais Graca, J. P.
    Lobo, I. P.
    PHYSICS OF THE DARK UNIVERSE, 2019, 23