Interacting Tsallis agegraphic dark energy in DGP braneworld cosmology

被引:0
|
作者
Zahra Feizi Mangoudehi
机构
[1] University of Guilan,Department of Physics
来源
关键词
TADE; Interaction; DGP braneworld cosmology; Statefinder diagnostic; The ; plane; Observational constrains; Turning point;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to study the Tsallis agegraphic dark energy with an interaction term between dark energy and dark matter in the DGP brane-world scenario. For this, we assume some initial conditions to obtain the dark energy density, deceleration, dark energy EoS, and total EoS parameters. Then, we analyze the statefinder parameters, ω′DE−ωDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega '{}_{DE}-\omega _{DE}$\end{document} plots, and classical stability features of the model. The results state that the deceleration parameter provides the phase transition from decelerated to accelerated phase. The ωDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{DE}$\end{document} graphs show the phantom behavior, while the ωtot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{tot}$\end{document} exhibits the quintessence and phantom during the evolution of the Universe. Following the graphs, the Statefinder analysis shows the quintessence behavior of the model for the past and present. However, it tends to the ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document} in the following era. The ω′DE−ωDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega '{}_{DE}-\omega _{DE}$\end{document} plot indicates the thawing or freezing area depending on the type of era and different values of b2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b^{2}$\end{document}, δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta $\end{document}, and m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m$\end{document}. By the square of the sound speed, we see the model is stable in the past, stable or unstable at the current time, and unstable in the future for selected values of b2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b^{2}$\end{document}, δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta $\end{document}, and m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m$\end{document}. To test the model, we use the recent Hubble data. We also employ Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to compare the model with the ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document} as the reference model. In addition, we test the model using the H−z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H-z$\end{document} plot, and we see a turning point in the future time. The results from the best fit values for the ωtot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{tot}$\end{document} plot emphasize that the Universe is in the quintessence region in the current time. It will enter the phantom phase, and then it will approach the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda $\end{document} state in the future. But, the ωDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{DE}$\end{document} always stays on the phantom region. The model is unstable in the present and progressive era.
引用
收藏
相关论文
共 50 条
  • [21] Interacting new agegraphic dark energy in nonflat Brans-Dicke cosmology
    Sheykhi, Ahmad
    PHYSICAL REVIEW D, 2010, 81 (02)
  • [22] Phase space analysis of Tsallis agegraphic dark energy
    Hai Huang
    Qihong Huang
    Ruanjing Zhang
    General Relativity and Gravitation, 2021, 53
  • [23] Cosmological implications of dark energy model in DGP braneworld
    Abdul Jawad
    Ines G. Salako
    The European Physical Journal Plus, 130
  • [24] Phase space analysis of Tsallis agegraphic dark energy
    Huang, Hai
    Huang, Qihong
    Zhang, Ruanjing
    GENERAL RELATIVITY AND GRAVITATION, 2021, 53 (07)
  • [25] Cosmological implications of dark energy model in DGP braneworld
    Jawad, Abdul
    Salako, Ines G.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (10):
  • [26] Interacting entropy-corrected new agegraphic dark energy in Brans–Dicke cosmology
    K. Karami
    A. Sheykhi
    M. Jamil
    Z. Azarmi
    M. M. Soltanzadeh
    General Relativity and Gravitation, 2011, 43 : 27 - 39
  • [27] COSMOLOGY FROM ANISOTROPIC DGP BRANEWORLD
    Ansari, Rizwan Ul Haq
    Suresh, P. K.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (03): : 233 - 244
  • [28] Statefinder diagnosis for holographic dark energy in the DGP braneworld
    Ghaffari, S.
    Sheykhi, A.
    Dehghani, M. H.
    PHYSICAL REVIEW D, 2015, 91 (02)
  • [29] Sign-changeable interacting agegraphic dark energy in Brans-Dicke cosmology
    Zadeh, M. Abdollahi
    Sheykhi, A.
    CANADIAN JOURNAL OF PHYSICS, 2020, 98 (07) : 643 - 649
  • [30] Restoring New Agegraphic Dark Energy in RS II Braneworld
    Mubasher Jamil
    K. Karami
    A. Sheykhi
    International Journal of Theoretical Physics, 2011, 50 : 3069 - 3077