Interacting Tsallis agegraphic dark energy in DGP braneworld cosmology

被引:0
|
作者
Zahra Feizi Mangoudehi
机构
[1] University of Guilan,Department of Physics
来源
关键词
TADE; Interaction; DGP braneworld cosmology; Statefinder diagnostic; The ; plane; Observational constrains; Turning point;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to study the Tsallis agegraphic dark energy with an interaction term between dark energy and dark matter in the DGP brane-world scenario. For this, we assume some initial conditions to obtain the dark energy density, deceleration, dark energy EoS, and total EoS parameters. Then, we analyze the statefinder parameters, ω′DE−ωDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega '{}_{DE}-\omega _{DE}$\end{document} plots, and classical stability features of the model. The results state that the deceleration parameter provides the phase transition from decelerated to accelerated phase. The ωDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{DE}$\end{document} graphs show the phantom behavior, while the ωtot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{tot}$\end{document} exhibits the quintessence and phantom during the evolution of the Universe. Following the graphs, the Statefinder analysis shows the quintessence behavior of the model for the past and present. However, it tends to the ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document} in the following era. The ω′DE−ωDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega '{}_{DE}-\omega _{DE}$\end{document} plot indicates the thawing or freezing area depending on the type of era and different values of b2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b^{2}$\end{document}, δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta $\end{document}, and m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m$\end{document}. By the square of the sound speed, we see the model is stable in the past, stable or unstable at the current time, and unstable in the future for selected values of b2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b^{2}$\end{document}, δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta $\end{document}, and m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m$\end{document}. To test the model, we use the recent Hubble data. We also employ Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to compare the model with the ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document} as the reference model. In addition, we test the model using the H−z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H-z$\end{document} plot, and we see a turning point in the future time. The results from the best fit values for the ωtot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{tot}$\end{document} plot emphasize that the Universe is in the quintessence region in the current time. It will enter the phantom phase, and then it will approach the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda $\end{document} state in the future. But, the ωDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{DE}$\end{document} always stays on the phantom region. The model is unstable in the present and progressive era.
引用
收藏
相关论文
共 50 条
  • [1] Interacting Tsallis agegraphic dark energy in DGP braneworld cosmology
    Mangoudehi, Zahra Feizi
    ASTROPHYSICS AND SPACE SCIENCE, 2022, 367 (03)
  • [2] Quintom dark energy in the DGP braneworld cosmology
    Moyassari, P.
    Setare, M. R.
    PHYSICS LETTERS B, 2009, 674 (4-5) : 237 - 242
  • [3] Cosmological constraints on agegraphic dark energy in DGP braneworld gravity
    Farajollahi, H.
    Ravanpak, A.
    Fadakar, G. F.
    ASTROPHYSICS AND SPACE SCIENCE, 2013, 348 (01) : 253 - 259
  • [4] Cosmological constraints on agegraphic dark energy in DGP braneworld gravity
    H. Farajollahi
    A. Ravanpak
    G. F. Fadakar
    Astrophysics and Space Science, 2013, 348 : 253 - 259
  • [5] Holographic interacting dark energy in the braneworld cosmology
    Kim, Kyoung Yee
    Lee, Hyung Won
    Myung, Yun Soo
    MODERN PHYSICS LETTERS A, 2007, 22 (35) : 2631 - 2645
  • [6] Interacting agegraphic dark energy model in DGP brane-world cosmology: Dynamical system approach
    Ravanpak, A.
    Fadakar, G. F.
    MODERN PHYSICS LETTERS A, 2019, 34 (14)
  • [7] Generalized Second Law of Thermodynamics for Interacting Dark Energy in the DGP Braneworld
    Dutta, Jibitesh
    Chakraborty, Subenoy
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (08) : 2383 - 2390
  • [8] Generalized Second Law of Thermodynamics for Interacting Dark Energy in the DGP Braneworld
    Jibitesh Dutta
    Subenoy Chakraborty
    International Journal of Theoretical Physics, 2011, 50 : 2383 - 2390
  • [9] Interacting and non-interacting Renyi holographic dark energy models in DGP braneworld
    Saha, Arindam
    Chanda, Anirban
    Dey, Sagar
    Ghose, Souvik
    Paul, B. C.
    MODERN PHYSICS LETTERS A, 2023, 38 (02)
  • [10] Tsallis agegraphic dark energy model
    Zadeh, M. Abdollahi
    Sheykhi, A.
    Moradpour, H.
    MODERN PHYSICS LETTERS A, 2019, 34 (11)