Deep learning for biomedical image reconstruction: a survey

被引:0
|
作者
Hanene Ben Yedder
Ben Cardoen
Ghassan Hamarneh
机构
[1] Simon Fraser University,School of Computing Science
来源
关键词
Image reconstruction; Modality; Deep learning; Inverse problem; Analytical approach; Iterative approach; Limited data representation;
D O I
暂无
中图分类号
学科分类号
摘要
Medical imaging is an invaluable resource in medicine as it enables to peer inside the human body and provides scientists and physicians with a wealth of information indispensable for understanding, modelling, diagnosis, and treatment of diseases. Reconstruction algorithms entail transforming signals collected by acquisition hardware into interpretable images. Reconstruction is a challenging task given the ill-posedness of the problem and the absence of exact analytic inverse transforms in practical cases. While the last decades witnessed impressive advancements in terms of new modalities, improved temporal and spatial resolution, reduced cost, and wider applicability, several improvements can still be envisioned such as reducing acquisition and reconstruction time to reduce patient’s exposure to radiation and discomfort while increasing clinics throughput and reconstruction accuracy. Furthermore, the deployment of biomedical imaging in handheld devices with small power requires a fine balance between accuracy and latency. The design of fast, robust, and accurate reconstruction algorithms is a desirable, yet challenging, research goal. While the classical image reconstruction algorithms approximate the inverse function relying on expert-tuned parameters to ensure reconstruction performance, deep learning (DL) allows automatic feature extraction and real-time inference. Hence, DL presents a promising approach to image reconstruction with artifact reduction and reconstruction speed-up reported in recent works as part of a rapidly growing field. We review state-of-the-art image reconstruction algorithms with a focus on DL-based methods. First, we examine common reconstruction algorithm designs, applied metrics, and datasets used in the literature. Then, key challenges are discussed as potentially promising strategic directions for future research.
引用
收藏
页码:215 / 251
页数:36
相关论文
共 50 条
  • [31] A Comprehensive Survey of Deep Learning for Image Captioning
    Hossain, Md Zakir
    Sohel, Ferdous
    Shiratuddin, Mohd Fairuz
    Laga, Hamid
    ACM COMPUTING SURVEYS, 2019, 51 (06)
  • [32] A survey of deep learning approaches to image restoration
    Su, Jingwen
    Xu, Boyan
    Yin, Hujun
    NEUROCOMPUTING, 2022, 487 : 46 - 65
  • [33] Deep learning in medical image registration: a survey
    Haskins, Grant
    Kruger, Uwe
    Yan, Pingkun
    MACHINE VISION AND APPLICATIONS, 2020, 31 (01)
  • [34] Deep Learning Methods in Image Matting: A Survey
    Huang, Lingtao
    Liu, Xipeng
    Wang, Xuelin
    Li, Jiangqi
    Tan, Benying
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [35] A survey on deep learning in medical image analysis
    Litjens, Geert
    Kooi, Thijs
    Bejnordi, Babak Ehteshami
    Setio, Arnaud Arindra Adiyoso
    Ciompi, Francesco
    Ghafoorian, Mohsen
    van der Laak, Jeroen A. W. M.
    van Ginneken, Bram
    Sanchez, Clara I.
    MEDICAL IMAGE ANALYSIS, 2017, 42 : 60 - 88
  • [36] Deep Learning in Microscopy Image Analysis: A Survey
    Xing, Fuyong
    Xie, Yuanpu
    Su, Hai
    Liu, Fujun
    Yang, Lin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (10) : 4550 - 4568
  • [37] Deep Residual Learning for Image Recognition: A Survey
    Shafiq, Muhammad
    Gu, Zhaoquan
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [38] Deep learning for hyperspectral image classification: A survey
    Kumar, Vinod
    Singh, Ravi Shankar
    Rambabu, Medara
    Dua, Yaman
    COMPUTER SCIENCE REVIEW, 2024, 53
  • [39] Biomedical Image Recognition in Pulmonology and Oncology with the Use of Deep Learning
    V. A. Kovalev
    V. A. Liauchuk
    D. M. Voynov
    A. V. Tuzikov
    Pattern Recognition and Image Analysis, 2021, 31 : 144 - 162
  • [40] A Deep Learning Approach for Slice to Volume Biomedical Image Integration
    Almogadwy, Bassam
    McLeod, Kenneth
    Burger, Albert
    ICBBT 2019: 2019 11TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL TECHNOLOGY, 2019, : 62 - 68