Deep learning for hyperspectral image classification: A survey

被引:0
|
作者
Kumar, Vinod [1 ]
Singh, Ravi Shankar [1 ]
Rambabu, Medara [2 ]
Dua, Yaman [1 ]
机构
[1] Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi 221005, Uttar Pradesh, India
[2] Gandhi Inst Technol & Management, Dept Comp Sci & Engn, Visakhapatnam 530045, Andhra Pradesh, India
关键词
Deep learning (DL); Convolutional neural network (CNN); Hyperspectral image (HSI); Recurrent neural network (RNN); Graph convolution network (GCN); Machine learning (ML); SPECTRAL-SPATIAL CLASSIFICATION; NEURAL-NETWORKS; SVM; CNN; DIMENSIONALITY; SUPERPIXEL; ATTENTION; MODEL;
D O I
10.1016/j.cosrev.2024.100658
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral image (HSI) classification is a significant topic of discussion in real-world applications. The prevalence of these applications stems from the precise spectral information offered by each pixel & sacute; data in hyperspectral imaging (HS). Classical machine learning (ML) methods face challenges in precise object classification with HSI data complexity. The intrinsic non-linear relationship between spectral information and materials complicates the task. Deep learning (DL) has proven to be a robust feature extractor in computer vision, effectively addressing nonlinear challenges. This validation drives its integration into HSI classification, which proves to be highly effective. This review compares DL approaches to HSI classification, highlighting its superiority over classical ML algorithms. Subsequently, a framework is constructed to analyze current advances in DL-based HSI classification, categorizing studies based on a network using only spectral features, spatial features, or both spectral-spatial features. Moreover, we have explained a few recent advanced DL models. Additionally, the study acknowledges that DL demands a substantial number of labeled training instances. However, obtaining such a large dataset for the HSI classification framework proves to be time and cost-intensive. So, we also explain the DL methodologies, which work well with the limited training data availability. Consequently, the survey introduces techniques aimed at enhancing the generalization performance of DL procedures, offering guidance for the future.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] A survey: Deep learning for hyperspectral image classification with few labeled samples
    Jia, Sen
    Jiang, Shuguo
    Lin, Zhijie
    Li, Nanying
    Xu, Meng
    Yu, Shiqi
    NEUROCOMPUTING, 2021, 448 : 179 - 204
  • [2] Information Leakage in Deep Learning-Based Hyperspectral Image Classification: A Survey
    Feng, Hao
    Wang, Yongcheng
    Li, Zheng
    Zhang, Ning
    Zhang, Yuxi
    Gao, Yunxiao
    REMOTE SENSING, 2023, 15 (15)
  • [3] Deep Multiview Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Anzhu
    Yu, Xuchu
    Wang, Ruirui
    Gao, Kuiliang
    Guo, Wenyue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7758 - 7772
  • [4] Deep Learning for Hyperspectral Image Classification: An Overview
    Li, Shutao
    Song, Weiwei
    Fang, Leyuan
    Chen, Yushi
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 6690 - 6709
  • [5] Deep Learning Ensemble for Hyperspectral Image Classification
    Chen, Yushi
    Wang, Ying
    Gu, Yanfeng
    He, Xin
    Ghamisi, Pedram
    Jia, Xiuping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (06) : 1882 - 1897
  • [6] Deep transfer learning for Hyperspectral Image classification
    Lin, Jianzhe
    Ward, Rabab
    Wang, Z. Jane
    2018 IEEE 20TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2018,
  • [7] Hyperspectral Image Classification With Deep Learning Models
    Yang, Xiaofei
    Ye, Yunming
    Li, Xutao
    Lau, Raymond Y. K.
    Zhang, Xiaofeng
    Huang, Xiaohui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5408 - 5423
  • [8] Active Deep Learning for Hyperspectral Image Classification With Uncertainty Learning
    Lei, Zhao
    Zeng, Yi
    Liu, Peng
    Su, Xiaohui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] Hyperspectral image classification via contextual deep learning
    Xiaorui Ma
    Jie Geng
    Hongyu Wang
    EURASIP Journal on Image and Video Processing, 2015
  • [10] Probabilistic deep metric learning for hyperspectral image classification
    Wang, Chengkun
    Zheng, Wenzhao
    Sun, Xian
    Zhou, Jie
    Lu, Jiwen
    PATTERN RECOGNITION, 2025, 157