Mittag–Leffler stability for a new coupled system of fractional-order differential equations on network

被引:0
|
作者
Yang Gao
机构
[1] Daqing Normal University,Department of Mathematics
关键词
Mittag–Leffler stable; Coupled model; Global stability; Caputo derivative;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the stability problem of a new coupled model constructed by two fractional-order differential equations for every vertex is studied. The coupled relationship is hybrid. By using the method of constructing Lyapunov functions based on graph-theoretical approach for coupled systems, sufficient conditions that the coexistence equilibrium of the coupling model is globally Mittag–Leffler stable in R2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R^{2n}$\end{document} are derived. An example is given to illustrate the main results.
引用
收藏
相关论文
共 50 条
  • [31] Generalized Mittag-Leffler Input Stability of the Fractional-Order Electrical Circuits
    Sene, Ndolane
    IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2020, 1 : 233 - 242
  • [32] A Mittag-Leffler fractional-order difference observer
    Miguel Delfin-Prieto, Sergio
    Martinez-Guerra, Rafael
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (05): : 2997 - 3018
  • [33] Mittag–Leffler Stability of Impulsive Nonlinear Fractional-Order Systems with Time Delays
    K. Mathiyalagan
    Yong-Ki Ma
    Iranian Journal of Science, 2023, 47 : 99 - 108
  • [34] Global Mittag–Leffler stability of complex valued fractional-order neural network with discrete and distributed delays
    Tyagi S.
    Abbas S.
    Hafayed M.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (3): : 485 - 505
  • [35] A Comparative Analysis of the Fractional-Order Coupled Korteweg-De Vries Equations with the Mittag-Leffler Law
    Aljahdaly, Noufe H.
    Akgul, Ali
    Shah, Rasool
    Mahariq, Ibrahim
    Kafle, Jeevan
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [36] Mittag–Leffler–Ulam stabilities for variable fractional-order differential equations driven by Lévy noiseMittag–Leffler–Ulam stabilities for variable fractional-order differential equations drivenS. Moualkia et al.
    Seyfeddine Moualkia
    Yang Liu
    Jianlong Qiu
    Jinde Cao
    Nonlinear Dynamics, 2025, 113 (11) : 13043 - 13059
  • [37] Mittag-Leffler-Ulam stabilities for variable fractional-order differential equations driven by Lévy noise
    Moualkia, Seyfeddine
    Liu, Yang
    Qiu, Jianlong
    Cao, Jinde
    NONLINEAR DYNAMICS, 2025,
  • [38] A generalization of the Mittag–Leffler function and solution of system of fractional differential equations
    Junsheng Duan
    Advances in Difference Equations, 2018
  • [39] Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays
    Zheng, Bibo
    Wang, Zhanshan
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 430
  • [40] Further results on Mittag-Leffler synchronization of fractional-order coupled neural networks
    Fengxian Wang
    Fang Wang
    Xinge Liu
    Advances in Difference Equations, 2021