Mittag–Leffler stability for a new coupled system of fractional-order differential equations on network

被引:0
|
作者
Yang Gao
机构
[1] Daqing Normal University,Department of Mathematics
关键词
Mittag–Leffler stable; Coupled model; Global stability; Caputo derivative;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the stability problem of a new coupled model constructed by two fractional-order differential equations for every vertex is studied. The coupled relationship is hybrid. By using the method of constructing Lyapunov functions based on graph-theoretical approach for coupled systems, sufficient conditions that the coexistence equilibrium of the coupling model is globally Mittag–Leffler stable in R2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R^{2n}$\end{document} are derived. An example is given to illustrate the main results.
引用
收藏
相关论文
共 50 条
  • [21] Mittag-Leffler Stability for Impulsive Caputo Fractional Differential Equations
    Agarwal, R.
    Hristova, S.
    O'Regan, D.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2021, 29 (03) : 689 - 705
  • [22] Generalized Mittag-Leffler Input Stability of the Fractional Differential Equations
    Sene, Ndolane
    Srivastava, Gautam
    SYMMETRY-BASEL, 2019, 11 (05):
  • [23] Mittag-Leffler Stability of Fractional-Order Nonlinear Differential Systems With State-Dependent Delays
    Li, Hui
    Kao, Yonggui
    Chen, Yangquan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (05) : 2108 - 2116
  • [24] Fractional-Order Logistic Differential Equation with Mittag-Leffler-Type Kernel
    Area, Ivan
    Nieto, Juan J.
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [25] Fractional-Order Mittag-Leffler Functions for Solving Multi-dimensional Fractional Pantograph Delay Differential Equations
    Ghasempour, Arezoo
    Ordokhani, Yadollah
    Sabermahani, Sedigheh
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (03) : 885 - 898
  • [26] Mittag–Leffler stability, control, and synchronization for chaotic generalized fractional-order systems
    Tarek M. Abed-Elhameed
    Tarek Aboelenen
    Advances in Continuous and Discrete Models, 2022
  • [27] Multiple Mittag-Leffler Stability of Fractional-Order Recurrent Neural Networks
    Liu, Peng
    Zeng, Zhigang
    Wang, Jun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08): : 2279 - 2288
  • [28] Mittag-Leffler stability of nabla discrete fractional-order dynamic systems
    Wei, Yingdong
    Wei, Yiheng
    Chen, Yuquan
    Wang, Yong
    NONLINEAR DYNAMICS, 2020, 101 (01) : 407 - 417
  • [29] Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Song, Qiankun
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 416 - 422
  • [30] Mittag–Leffler stability of fractional-order Lorenz and Lorenz-family systems
    Ke Yunquan
    Miao Chunfang
    Nonlinear Dynamics, 2016, 83 : 1237 - 1246