Asymptotic Behavior of a Bingham Flow in Thin Domains with Rough Boundary

被引:0
|
作者
Giuseppe Cardone
Carmen Perugia
Manuel Villanueva Pesqueira
机构
[1] Università del Sannio,Dipartimento di Ingegneria
[2] Università del Sannio,Dipartimento di Scienze e Tecnologie
[3] Universidad Pontificia Comillas Departamento Matemática Aplicada,undefined
来源
关键词
Non-Newtonian fluids; Thin domain; Oscillating boundary; Unfolding operators; Primary 35B27; Secondary 76A05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an incompressible Bingham flow in a thin domain with rough boundary, under the action of given external forces and with no-slip boundary condition on the whole boundary of the domain. In mathematical terms, this problem is described by non linear variational inequalities over domains where a small parameter ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} denotes the thickness of the domain and the roughness periodicity of the boundary. By using an adapted linear unfolding operator we perform a detailed analysis of the asymptotic behavior of the Bingham flow when ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} tends to zero. We obtain the homogenized limit problem for the velocity and the pressure, which preserves the nonlinear character of the flow, and study the effects of the microstructure in the corresponding effective equations. Finally, we give the interpretation of the limit problem in terms of a non linear Darcy law.
引用
收藏
相关论文
共 50 条