Asymptotic Behavior of a Bingham Flow in Thin Domains with Rough Boundary

被引:0
|
作者
Giuseppe Cardone
Carmen Perugia
Manuel Villanueva Pesqueira
机构
[1] Università del Sannio,Dipartimento di Ingegneria
[2] Università del Sannio,Dipartimento di Scienze e Tecnologie
[3] Universidad Pontificia Comillas Departamento Matemática Aplicada,undefined
来源
关键词
Non-Newtonian fluids; Thin domain; Oscillating boundary; Unfolding operators; Primary 35B27; Secondary 76A05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an incompressible Bingham flow in a thin domain with rough boundary, under the action of given external forces and with no-slip boundary condition on the whole boundary of the domain. In mathematical terms, this problem is described by non linear variational inequalities over domains where a small parameter ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} denotes the thickness of the domain and the roughness periodicity of the boundary. By using an adapted linear unfolding operator we perform a detailed analysis of the asymptotic behavior of the Bingham flow when ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} tends to zero. We obtain the homogenized limit problem for the velocity and the pressure, which preserves the nonlinear character of the flow, and study the effects of the microstructure in the corresponding effective equations. Finally, we give the interpretation of the limit problem in terms of a non linear Darcy law.
引用
收藏
相关论文
共 50 条
  • [31] ASYMPTOTIC ANALYSIS OF BOUNDARY-VALUE PROBLEMS IN THIN PERFORATED DOMAINS WITH RAPIDLY VARYING THICKNESS
    Mel'nyk, T. A.
    Popov, A. V.
    NONLINEAR OSCILLATIONS, 2010, 13 (01): : 57 - 84
  • [32] Long-term behavior of reaction–diffusion equations with nonlocal boundary conditions on rough domains
    Ciprian G. Gal
    Mahamadi Warma
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [33] Asymptotic behavior of solutions of nonlinear parabolic equations on two-layer thin domains
    Rekalo, AA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (05) : 1393 - 1410
  • [34] Asymptotic Behavior of Eigenvalues of the Laplacian on a Thin Domain under the Mixed Boundary Condition
    Jimbo, Shuichi
    Kurata, Kazuhiro
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (03) : 867 - 898
  • [35] On the Navier boundary condition for viscous fluids in rough domains
    Casado-Díaz J.
    Luna-Laynez M.
    Suárez-Grau F.J.
    SeMA Journal, 2012, 58 (1): : 5 - 24
  • [36] Holder estimates for parabolic operators on domains with rough boundary
    Disser, Karoline
    ter Elst, A. F. M.
    Rehberg, Joachim
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2017, 17 (01) : 65 - 79
  • [37] Asymptotic analysis of a Bingham fluid in a thin T-like shaped structure
    Bunoiu, Renata
    Gaudiello, Antonio
    Leopardi, Angelo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 123 : 148 - 166
  • [38] Fluid boundary of a viscoplastic Bingham flow for finite solid deformations
    Thual, O.
    Lacaze, L.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2010, 165 (3-4) : 84 - 87
  • [39] Asymptotic approximations of solutions to parabolic boundary value problems in thin perforated domains of rapidly varying thickness
    Mel'nik T.A.
    Popov A.V.
    Journal of Mathematical Sciences, 2009, 162 (3) : 348 - 372
  • [40] Thin domains with doubly oscillatory boundary
    Arrieta, Jose M.
    Villanueva-Pesqueira, Manuel
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (02) : 158 - 166