Asymptotic Behavior of a Bingham Flow in Thin Domains with Rough Boundary

被引:0
|
作者
Giuseppe Cardone
Carmen Perugia
Manuel Villanueva Pesqueira
机构
[1] Università del Sannio,Dipartimento di Ingegneria
[2] Università del Sannio,Dipartimento di Scienze e Tecnologie
[3] Universidad Pontificia Comillas Departamento Matemática Aplicada,undefined
来源
关键词
Non-Newtonian fluids; Thin domain; Oscillating boundary; Unfolding operators; Primary 35B27; Secondary 76A05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an incompressible Bingham flow in a thin domain with rough boundary, under the action of given external forces and with no-slip boundary condition on the whole boundary of the domain. In mathematical terms, this problem is described by non linear variational inequalities over domains where a small parameter ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} denotes the thickness of the domain and the roughness periodicity of the boundary. By using an adapted linear unfolding operator we perform a detailed analysis of the asymptotic behavior of the Bingham flow when ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} tends to zero. We obtain the homogenized limit problem for the velocity and the pressure, which preserves the nonlinear character of the flow, and study the effects of the microstructure in the corresponding effective equations. Finally, we give the interpretation of the limit problem in terms of a non linear Darcy law.
引用
收藏
相关论文
共 50 条
  • [1] Asymptotic Behavior of a Bingham Flow in Thin Domains with Rough Boundary
    Cardone, Giuseppe
    Perugia, Carmen
    Villanueva Pesqueira, Manuel
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2021, 93 (03)
  • [2] Asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a rough boundary
    Suarez-Grau, F. J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 117 : 99 - 123
  • [3] Asymptotic behaviour of Stokes flow in a thin domain with amoving rough boundary
    Fabricius, J.
    Koroleva, Y. O.
    Tsandzana, A.
    Wall, P.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2167):
  • [4] Asymptotic behaviour of pressure and stresses in a thin film flow with a rough boundary
    Benhaboucha, N
    Chambat, M
    Ciuperca, I
    QUARTERLY OF APPLIED MATHEMATICS, 2005, 63 (02) : 369 - 400
  • [5] ASYMPTOTIC ANALYSIS OF A MICROPOLAR FLUID FLOW IN A THIN DOMAIN WITH A FREE AND ROUGH BOUNDARY
    Boukrouche, Mahdi
    Paoli, Laetitia
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) : 1211 - 1256
  • [6] Asymptotic Behavior of a Viscous Fluid Near a Rough Boundary
    Casado-Diaz, J.
    Luna-Laynez, M.
    Suarez-Grau, F. J.
    BAIL 2010 - BOUNDARY AND INTERIOR LAYERS, COMPUTATIONAL AND ASYMPTOTIC METHODS, 2011, 81 : 57 - 64
  • [7] Asymptotic Analysis of a Bingham Fluid in a Thin Domain with Fourier and Tresca Boundary Conditions
    Dilmi, M.
    Benseridi, H.
    Saadallah, A.
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2014, 6 (06) : 797 - 810
  • [8] Asymptotic behavior for the filtration equation in domains with noncompact boundary
    Andreucci, Daniele
    Tedeev, Anatoli F.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (03) : 347 - 365
  • [9] ASYMPTOTIC BEHAVIOR OF THE NAVIER-STOKES SYSTEM IN A THIN DOMAIN WITH NAVIER CONDITION ON A SLIGHTLY ROUGH BOUNDARY
    Casado-Diaz, J.
    Luna-Laynez, M.
    Suarez-Grau, F. J.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) : 1641 - 1674
  • [10] Unsteady flow of Bingham fluid in a thin layer with mixed boundary conditions
    Letoufa, Yassine
    Benseridi, Hamid
    Ammar, Tedjani Hadj
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2022, 67 (04): : 773 - 788