Diameter preserving linear bijections of C(X)

被引:0
|
作者
Máté Gyory
Lajos Molnár
机构
[1] Institute of Mathematics,
[2] Lajos Kossuth University,undefined
[3] P.O. Box 12,undefined
[4] HU-4010 Debrecen,undefined
[5] Hungary,undefined
来源
Archiv der Mathematik | 1998年 / 71卷
关键词
Hausdorff Space; Function Algebra; Compact Hausdorff Space; Linear Bijection; Linear Preserver;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to solve a linear preserver problem on the function algebra C(X). We show that in the case in which X is a first countable compact Hausdorff space, every linear bijection \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\phi :C(X)\to C(X)$\end{document} having the property that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\hbox {diam} (\phi (f)(X))=\hbox {diam} (f(X)) (f\in C(X))$\end{document} is of the form¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \phi (f)=\tau \cdot f\circ \varphi +t(f)1 \,\, (f\in C(X))$\end{document}¶¶where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau \in {\Bbb C}, |\tau |=1, $\varphi :X\to X$\end{document} is a homeomorphism and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $t:C(X)\to {\Bbb C}$\end{document} is a linear functional.
引用
收藏
页码:301 / 310
页数:9
相关论文
共 50 条