Diameter preserving linear bijections of C(X)

被引:0
|
作者
Máté Gyory
Lajos Molnár
机构
[1] Institute of Mathematics,
[2] Lajos Kossuth University,undefined
[3] P.O. Box 12,undefined
[4] HU-4010 Debrecen,undefined
[5] Hungary,undefined
来源
Archiv der Mathematik | 1998年 / 71卷
关键词
Hausdorff Space; Function Algebra; Compact Hausdorff Space; Linear Bijection; Linear Preserver;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to solve a linear preserver problem on the function algebra C(X). We show that in the case in which X is a first countable compact Hausdorff space, every linear bijection \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\phi :C(X)\to C(X)$\end{document} having the property that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\hbox {diam} (\phi (f)(X))=\hbox {diam} (f(X)) (f\in C(X))$\end{document} is of the form¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \phi (f)=\tau \cdot f\circ \varphi +t(f)1 \,\, (f\in C(X))$\end{document}¶¶where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau \in {\Bbb C}, |\tau |=1, $\varphi :X\to X$\end{document} is a homeomorphism and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $t:C(X)\to {\Bbb C}$\end{document} is a linear functional.
引用
收藏
页码:301 / 310
页数:9
相关论文
共 50 条
  • [21] Diameter preserving linear maps and isometries, II
    Félix Cabello Sánchez
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2000, 110 : 205 - 211
  • [22] Diameter preserving linear maps and isometries, II
    Sánchez, FC
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2000, 110 (02): : 205 - 211
  • [23] Linear mappings preserving the diameter of the numerical range
    Chan, Jor-Ting
    Chan, Kong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 530 : 220 - 229
  • [24] AN ANSWER TO A QUESTION ON THE AFFINE BIJECTIONS ON C(X, I)
    Ercan, Zafer
    Onal, Suleyman
    QUAESTIONES MATHEMATICAE, 2009, 32 (01) : 115 - 117
  • [25] Bijections preserving invertibility of differences of matrices on Hn
    Damjan Kobal
    Acta Mathematica Sinica, English Series, 2008, 24
  • [26] Automatic continuity of orthogonality or disjointness preserving bijections
    Oikhberg, Timur
    Peralta, Antonio M.
    Puglisi, Daniele
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 57 - 88
  • [27] On 2-local diameter-preserving maps between C(X)-spaces
    Jimenez-Vargas, A.
    Sady, Fereshteh
    POSITIVITY, 2021, 25 (03) : 867 - 881
  • [28] On 2-local diameter-preserving maps between C(X)-spaces
    A. Jiménez-Vargas
    Fereshteh Sady
    Positivity, 2021, 25 : 867 - 881
  • [29] Similarities and circle-preserving bijections of the plane
    Beardon, A. F.
    MATHEMATICAL GAZETTE, 2023, 107 (570): : 508 - 511
  • [30] Bijections preserving commutators and automorphisms of unitriangular groups
    Holubowski, W.
    Stepanov, A. V.
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (01): : 24 - 34