An analytical framework for interpretable and generalizable single-cell data analysis

被引:0
|
作者
Jian Zhou
Olga G. Troyanskaya
机构
[1] University of Texas Southwestern Medical Center,Lyda Hill Department of Bioinformatics
[2] Princeton University,Lewis
[3] Simons Foundation,Sigler Institute for Integrative Genomics
[4] Princeton University,Flatiron Institute
来源
Nature Methods | 2021年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The scaling of single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here, we have developed a ‘linearly interpretable’ framework that combines the interpretability and transferability of linear methods with the representational power of non-linear methods. Within this framework we introduce a data representation and visualization method, GraphDR, and a structure discovery method, StructDR, that unifies cluster, trajectory and surface estimation and enables their confidence set inference.
引用
收藏
页码:1317 / 1321
页数:4
相关论文
共 50 条
  • [31] Interpretable single-cell factor decomposition using sciRED
    Pouyabahar, Delaram
    Andrews, Tallulah
    Bader, Gary D.
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [32] scPI: A Scalable Framework for Probabilistic Inference in Single-Cell RNA-Sequencing Data Analysis
    Ming, Jingsi
    Zhao, Jia
    Yang, Can
    STATISTICS IN BIOSCIENCES, 2023, 15 (03) : 633 - 656
  • [33] scPI: A Scalable Framework for Probabilistic Inference in Single-Cell RNA-Sequencing Data Analysis
    Jingsi Ming
    Jia Zhao
    Can Yang
    Statistics in Biosciences, 2023, 15 : 633 - 656
  • [34] Toward generalizable phenotype prediction from single-cell morphology representations
    Jenna Tomkinson
    Roshan Kern
    Cameron Mattson
    Gregory P. Way
    BMC Methods, 1 (1):
  • [35] SHARE-Topic: Bayesian interpretable modeling of single-cell multi-omic data
    El Kazwini, Nour
    Sanguinetti, Guido
    GENOME BIOLOGY, 2024, 25 (01)
  • [36] SHARE-Topic: Bayesian interpretable modeling of single-cell multi-omic data
    Nour El Kazwini
    Guido Sanguinetti
    Genome Biology, 25
  • [37] Interpretable deep learning of single-cell and epigenetic data reveals novel molecular insights in aging
    Li, Zhi-Peng
    Du, Zhaozhen
    Huang, De-Shuang
    Teschendorff, Andrew E.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [38] An interpretable single-cell RNA sequencing data clustering method based on latent Dirichlet allocation
    Yang, Qi
    Xu, Zhaochun
    Zhou, Wenyang
    Wang, Pingping
    Jiang, Qinghua
    Juan, Liran
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [39] Publisher Correction: scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data
    Songming Tang
    Xuejian Cui
    Rongxiang Wang
    Sijie Li
    Siyu Li
    Xin Huang
    Shengquan Chen
    Nature Communications, 15
  • [40] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    Computational and Structural Biotechnology Journal, 2021, 19 : 3234 - 3244