Interpretable single-cell factor decomposition using sciRED

被引:0
|
作者
Pouyabahar, Delaram [1 ,2 ]
Andrews, Tallulah [3 ,4 ]
Bader, Gary D. [1 ,2 ,5 ,6 ,7 ,8 ]
机构
[1] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[2] Univ Toronto, Donnelly Ctr, Toronto, ON, Canada
[3] Univ Western Ontario, Schulich Sch Med & Dent, Dept Biochem, London, ON, Canada
[4] Univ Western Ontario, Dept Comp Sci, London, ON, Canada
[5] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[6] Lunenfeld Tanenbaum Res Inst, Toronto, ON, Canada
[7] Univ Hlth Network, Princess Margaret Res Inst, Toronto, ON, Canada
[8] CIFAR Macmillan Multiscale Human Program, Toronto, ON, Canada
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; HETEROGENEITY; SEPARATION; CRITERION; ROTATION; PROMAX;
D O I
10.1038/s41467-025-57157-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell RNA sequencing maps gene expression heterogeneity within a tissue. However, identifying biological signals in this data is challenging due to confounding technical factors, sparsity, and high dimensionality. Data factorization methods address this by separating and identifying signals in the data, such as gene expression programs, but the resulting factors must be manually interpreted. We developed Single-Cell Interpretable REsidual Decomposition (sciRED) to improve the interpretation of scRNA-seq factor analysis. sciRED removes known confounding effects, uses rotations to improve factor interpretability, maps factors to known covariates, identifies unexplained factors that may capture hidden biological phenomena, and determines the genes and biological processes represented by the resulting factors. We apply sciRED to multiple scRNA-seq datasets and identify sex-specific variation in a kidney map, discern strong and weak immune stimulation signals in a PBMC dataset, reduce ambient RNA contamination in a rat liver atlas to help identify strain variation and reveal rare cell type signatures and anatomical zonation gene programs in a healthy human liver map. These demonstrate that sciRED is useful in characterizing diverse biological signals within scRNA-seq data.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Interpretable deep learning in single-cell omics
    Wagle, Manoj M.
    Long, Siqu
    Chen, Carissa
    Liu, Chunlei
    Yang, Pengyi
    BIOINFORMATICS, 2024, 40 (06)
  • [2] Interpretable factor models of single-cell RNA-seq via variational autoencoders
    Svensson, Valentine
    Gayoso, Adam
    Yosef, Nir
    Pachter, Lior
    BIOINFORMATICS, 2020, 36 (11) : 3418 - 3421
  • [3] Interpretable single-cell transcription factor prediction based on deep learning with attention mechanism
    Gong, Meiqin
    He, Yuchen
    Wang, Maocheng
    Zhang, Yongqing
    Ding, Chunli
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2023, 106
  • [4] Single-Cell Classification Using Mass Spectrometry through Interpretable Machine Learning
    Xie, Yuxuan Richard
    Castro, Daniel C.
    Bell, Sara E.
    Rubakhin, Stanislav S.
    Sweedler, Jonathan, V
    ANALYTICAL CHEMISTRY, 2020, 92 (13) : 9338 - 9347
  • [5] Blind spectral decomposition of single-cell fluorescence by parallel factor analysis
    Shirakawa, H
    Miyazaki, S
    BIOPHYSICAL JOURNAL, 2004, 86 (03) : 1739 - 1752
  • [6] JOINTLY: interpretable joint clustering of single-cell transcriptomes
    Moller, Andreas Fonss
    Madsen, Jesper Grud Skat
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [7] JOINTLY: interpretable joint clustering of single-cell transcriptomes
    Andreas Fønss Møller
    Jesper Grud Skat Madsen
    Nature Communications, 14
  • [8] An analytical framework for interpretable and generalizable single-cell data analysis
    Zhou, Jian
    Troyanskaya, Olga G.
    NATURE METHODS, 2021, 18 (11) : 1317 - +
  • [9] Principled and interpretable alignability testing and integration of single-cell data
    Ma, Rong
    Sun, Eric D.
    Donoho, David
    Zou, James
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (10)
  • [10] siVAE: interpretable deep generative models for single-cell transcriptomes
    Choi, Yongin
    Li, Ruoxin
    Quon, Gerald
    GENOME BIOLOGY, 2023, 24 (01)