Interpretable single-cell factor decomposition using sciRED

被引:0
|
作者
Pouyabahar, Delaram [1 ,2 ]
Andrews, Tallulah [3 ,4 ]
Bader, Gary D. [1 ,2 ,5 ,6 ,7 ,8 ]
机构
[1] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[2] Univ Toronto, Donnelly Ctr, Toronto, ON, Canada
[3] Univ Western Ontario, Schulich Sch Med & Dent, Dept Biochem, London, ON, Canada
[4] Univ Western Ontario, Dept Comp Sci, London, ON, Canada
[5] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[6] Lunenfeld Tanenbaum Res Inst, Toronto, ON, Canada
[7] Univ Hlth Network, Princess Margaret Res Inst, Toronto, ON, Canada
[8] CIFAR Macmillan Multiscale Human Program, Toronto, ON, Canada
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; HETEROGENEITY; SEPARATION; CRITERION; ROTATION; PROMAX;
D O I
10.1038/s41467-025-57157-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell RNA sequencing maps gene expression heterogeneity within a tissue. However, identifying biological signals in this data is challenging due to confounding technical factors, sparsity, and high dimensionality. Data factorization methods address this by separating and identifying signals in the data, such as gene expression programs, but the resulting factors must be manually interpreted. We developed Single-Cell Interpretable REsidual Decomposition (sciRED) to improve the interpretation of scRNA-seq factor analysis. sciRED removes known confounding effects, uses rotations to improve factor interpretability, maps factors to known covariates, identifies unexplained factors that may capture hidden biological phenomena, and determines the genes and biological processes represented by the resulting factors. We apply sciRED to multiple scRNA-seq datasets and identify sex-specific variation in a kidney map, discern strong and weak immune stimulation signals in a PBMC dataset, reduce ambient RNA contamination in a rat liver atlas to help identify strain variation and reveal rare cell type signatures and anatomical zonation gene programs in a healthy human liver map. These demonstrate that sciRED is useful in characterizing diverse biological signals within scRNA-seq data.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Author Correction: An analytical framework for interpretable and generalizable single-cell data analysis
    Jian Zhou
    Olga G. Troyanskaya
    Nature Methods, 2022, 19 : 370 - 370
  • [22] Airpart: interpretable statistical models for analyzing allelic imbalance in single-cell datasets
    Mu, Wancen
    Sarkar, Hirak
    Srivastava, Avi
    Choi, Kwangbom
    Patro, Rob
    Love, Michael, I
    BIOINFORMATICS, 2022, 38 (10) : 2773 - 2780
  • [23] Protocol to perform integrative analysis of highdimensional single-cell multimodal data using an interpretable deep learning technique
    Zhou, Manqi
    Zhang, Hao
    Bai, Zilong
    Mann-Krzisnik, Dylan
    Wang, Fei
    Li, Yue
    STAR PROTOCOLS, 2024, 5 (02):
  • [24] Decoding uterine leiomyoma tumorigenesis using single-cell transcriptomics and single-cell proteomics
    Machado-Lopez, A.
    Perez-Moraga, R.
    Punzon-Jimenez, P.
    Llera-Oyola, J.
    Galvez-Viedma, M.
    Grases, D.
    Aragon-Fernandez, P.
    Satorres, E.
    Roson, B.
    Schoof, E. M.
    Porta-Pardo, E.
    Simon, C.
    Mas, A.
    HUMAN REPRODUCTION, 2023, 38
  • [25] Single-Cell Biopsy using Nanopipettes
    Actis, Paolo
    Kan, Shahid Y.
    Penfold, Catherine
    Vilozny, Boaz
    Pourmand, Nader
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 188A - 188A
  • [26] Single-Cell Manipulation using Nanopipettes
    Maalouf, M.
    Actis, P.
    Pourmamd, N.
    NANOTECHNOLOGY 2012, VOL 2: ELECTRONICS, DEVICES, FABRICATION, MEMS, FLUIDICS AND COMPUTATIONAL, 2012, : 384 - 387
  • [27] Single-cell manipulation using nanopipettes
    Actis, Paolo
    Vilozny, Boaz
    Pourmand, Nader
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [28] VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
    Seninge, Lucas
    Anastopoulos, Ioannis
    Ding, Hongxu
    Stuart, Joshua
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [29] VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
    Lucas Seninge
    Ioannis Anastopoulos
    Hongxu Ding
    Joshua Stuart
    Nature Communications, 12
  • [30] A Study of Disease Prognosis in Lung Adenocarcinoma Using Single-Cell Decomposition and Immune Signature Analysis
    Lee, Cheng-Yang
    Wu, Yu-Chung
    Liao, Tze-Chi
    Hsiao, Shih-Hsin
    Hsu, Justin Bo-Kai
    Chang, Tzu-Hao
    CANCERS, 2024, 16 (18)