Interpretable single-cell factor decomposition using sciRED

被引:0
|
作者
Pouyabahar, Delaram [1 ,2 ]
Andrews, Tallulah [3 ,4 ]
Bader, Gary D. [1 ,2 ,5 ,6 ,7 ,8 ]
机构
[1] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[2] Univ Toronto, Donnelly Ctr, Toronto, ON, Canada
[3] Univ Western Ontario, Schulich Sch Med & Dent, Dept Biochem, London, ON, Canada
[4] Univ Western Ontario, Dept Comp Sci, London, ON, Canada
[5] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[6] Lunenfeld Tanenbaum Res Inst, Toronto, ON, Canada
[7] Univ Hlth Network, Princess Margaret Res Inst, Toronto, ON, Canada
[8] CIFAR Macmillan Multiscale Human Program, Toronto, ON, Canada
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; HETEROGENEITY; SEPARATION; CRITERION; ROTATION; PROMAX;
D O I
10.1038/s41467-025-57157-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell RNA sequencing maps gene expression heterogeneity within a tissue. However, identifying biological signals in this data is challenging due to confounding technical factors, sparsity, and high dimensionality. Data factorization methods address this by separating and identifying signals in the data, such as gene expression programs, but the resulting factors must be manually interpreted. We developed Single-Cell Interpretable REsidual Decomposition (sciRED) to improve the interpretation of scRNA-seq factor analysis. sciRED removes known confounding effects, uses rotations to improve factor interpretability, maps factors to known covariates, identifies unexplained factors that may capture hidden biological phenomena, and determines the genes and biological processes represented by the resulting factors. We apply sciRED to multiple scRNA-seq datasets and identify sex-specific variation in a kidney map, discern strong and weak immune stimulation signals in a PBMC dataset, reduce ambient RNA contamination in a rat liver atlas to help identify strain variation and reveal rare cell type signatures and anatomical zonation gene programs in a healthy human liver map. These demonstrate that sciRED is useful in characterizing diverse biological signals within scRNA-seq data.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Comprehensive single-cell RNA-seq analysis using deep interpretable generative modeling guided by biological hierarchy knowledge
    Chen, Hegang
    Lu, Yuyin
    Dai, Zhiming
    Yang, Yuedong
    Li, Qing
    Rao, Yanghui
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (04)
  • [43] Studying hematopoiesis using single-cell technologies
    Ye, Fang
    Huang, Wentao
    Guo, Guoji
    JOURNAL OF HEMATOLOGY & ONCOLOGY, 2017, 10
  • [44] SINGLE-CELL BIOENGINEERING USING LASER MICROSURGERY
    GLANZ, J
    R&D MAGAZINE, 1994, 36 (01): : 35 - 35
  • [45] Single-Cell Analysis Using Droplet Microfluidics
    Matula, Kinga
    Rivello, Francesca
    Huck, Wilhelm T. S.
    ADVANCED BIOSYSTEMS, 2020, 4 (01)
  • [46] Single-cell monitoring using fiberoptic nanosensors
    Vo-Dinh, Tuan
    Zhang, Yan
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2011, 3 (01) : 79 - 85
  • [47] Temporal modelling using single-cell transcriptomics
    Ding, Jun
    Sharon, Nadav
    Bar-Joseph, Ziv
    NATURE REVIEWS GENETICS, 2022, 23 (06) : 355 - 368
  • [48] Temporal modelling using single-cell transcriptomics
    Jun Ding
    Nadav Sharon
    Ziv Bar-Joseph
    Nature Reviews Genetics, 2022, 23 (6) : 355 - 368
  • [49] Single-Cell Analysis Using Capillary Electrophoresis
    Deng Bin
    Xu Jianrong
    Wang Zhiming
    Xiao Yuxiu
    PROGRESS IN CHEMISTRY, 2010, 22 (11) : 2215 - 2223
  • [50] Studying hematopoiesis using single-cell technologies
    Fang Ye
    Wentao Huang
    Guoji Guo
    Journal of Hematology & Oncology, 10