Robustness in a posteriori error analysis for FEM flow models

被引:0
|
作者
Stefano Berrone
机构
[1] Dipartimento di Matematica,
[2] Politecnico di Torino,undefined
[3] Corso Duca degli Abruzzi 24,undefined
[4] 10129 Torino,undefined
[5] Italy; e-mail: sberrone@calvino.polito.it ,undefined
来源
Numerische Mathematik | 2002年 / 91卷
关键词
Mathematics Subject Classification (1991): 65N30, 65N15, 65N50, 76D05, 76M10;
D O I
暂无
中图分类号
学科分类号
摘要
We derive a residual-based a posteriori error estimator for a stabilized finite element discretization of certain incompressible Oseen-like equations. We focus our attention on the behaviour of the effectivity index and we carry on a numerical study of its sensitiveness to the problem and mesh parameters. We also consider a scalar reaction-convection-diffusion problem and a divergence-free projection problem in order to investigate the effects on the robustness of our a posteriori error estimator of the reaction-convection-diffusion phenomena and, separately, of the incompressibility constraint.
引用
收藏
页码:389 / 422
页数:33
相关论文
共 50 条
  • [21] A POSTERIORI ERROR ANALYSIS FOR A VISCOUS FLOW-TRANSPORT PROBLEM
    Alvarez, Mario
    Gatica, Gabriel N.
    Ruiz-Baier, Ricardo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1789 - 1816
  • [22] An augmented mixed FEM for the convective Brinkman-Forchheimer problem: a priori and a posteriori error analysis
    Caucao, Sergio
    Esparza, Johann
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
  • [23] Residual-based a posteriori error analysis for symmetric mixed Arnold-Winther FEM
    Carstensen, Carsten
    Gallistl, Dietmar
    Gedicke, Joscha
    NUMERISCHE MATHEMATIK, 2019, 142 (02) : 205 - 234
  • [24] A posteriori error analysis of multiscale operator decomposition methods for multiphysics models
    Estep, D.
    Carey, V.
    Ginting, V.
    Tavener, S.
    Wildey, T.
    SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
  • [25] An a posteriori error analysis of an augmented discontinuous Galerkin formulation for Darcy flow
    Tomás P. Barrios
    Rommel Bustinza
    Numerische Mathematik, 2012, 120 : 231 - 269
  • [26] A POSTERIORI ERROR ESTIMATES OF hp-FEM FOR OPTIMAL CONTROL PROBLEMS
    Gong, Wei
    Liu, Wenbin
    Yan, Ningning
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (01) : 48 - 69
  • [27] p-version FEM for structural acoustics with a posteriori error estimation
    Dey, S
    Datta, DK
    Shirron, JJ
    Shephard, MS
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (17-18) : 1946 - 1957
  • [28] A posteriori error estimates based on superconvergence of FEM for fractional evolution equations
    Tang, Yuelong
    Hua, Yuchun
    OPEN MATHEMATICS, 2021, 19 (01): : 1210 - 1222
  • [29] On residual-based a posteriori error estimation in hp-FEM
    J.M. Melenk
    B.I. Wohlmuth
    Advances in Computational Mathematics, 2001, 15 : 311 - 331
  • [30] hp-FEM for the α-Mosolov problem: a priori and a posteriori error estimates
    Banz, Lothar
    Stephan, Ernst P.
    NUMERISCHE MATHEMATIK, 2024, 156 (05) : 1679 - 1718