Embedding the three-dimensional pseudo-sphere

被引:0
|
作者
István Ozsváth
Alan Sauter
机构
[1] The University of Texas at Dallas,Department of Mathematics MS EC 35
[2] Collin College,undefined
来源
General Relativity and Gravitation | 2008年 / 40卷
关键词
Embeddings; Homogeneous pseudo-Riemannian manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We construct the embedding of the manifold x2 + y2 − u2 − v2 = 1 carrying the most general homogeneous metric into the eight-dimensional pseudo sphere.
引用
收藏
页码:1981 / 1985
页数:4
相关论文
共 50 条
  • [42] Searching for a C-function on the three-dimensional sphere
    Beneventano, C. G.
    Cavero-Pelaez, I.
    D'Ascanio, D.
    Santangelo, E. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (45)
  • [43] Wireless Instrumented Sphere For Three-Dimensional Force Sensing
    Mueller, Ivan
    de Brito, Renato Machado
    Pereira, Carlos E.
    Bender, Renar Joao
    SAS 2009 - IEEE SENSORS APPLICATIONS SYMPOSIUM, PROCEEDINGS, 2009, : 153 - +
  • [44] Minimal surfaces in the three-dimensional sphere with high symmetry
    Bai, Sheng
    Wang, Chao
    Wang, Shicheng
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2021, 13 (02) : 289 - 317
  • [45] Pseudo -three-dimensional model for hydraulic fracturing with foams
    Antonov, I. D.
    INTERNATIONAL CONFERENCE EMERGING TRENDS IN APPLIED AND COMPUTATIONAL PHYSICS 2019 (ETACP-2019), 2019, 1236
  • [46] THREE-DIMENSIONAL ISOTROPIC PSEUDO-GAUSSIAN OSCILLATORS
    Cotaescu, Ion I.
    Gravila, Paul
    Paulescu, Marius
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (07): : 1103 - 1111
  • [47] Diagonalization of three-dimensional pseudo-Riemannian metrics
    Kowalski, Oldrich
    Sekizawa, Masami
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 74 : 251 - 255
  • [48] Pseudo-geodesics on three-dimensional surfaces and pseudo-geodesic meshes
    Pham-Trong, V
    Szafran, N
    Biard, L
    NUMERICAL ALGORITHMS, 2001, 26 (04) : 305 - 315
  • [49] Pseudo-geodesics on three-dimensional surfaces and pseudo-geodesic meshes
    Valérie Pham-Trong
    Nicolas Szafran
    Luc Biard
    Numerical Algorithms, 2001, 26 : 305 - 315
  • [50] Embedding theorems for locally projective three-dimensional linear spaces
    Metsch, K
    DISCRETE MATHEMATICS, 1997, 174 (1-3) : 227 - 245