Embedding the three-dimensional pseudo-sphere

被引:0
|
作者
István Ozsváth
Alan Sauter
机构
[1] The University of Texas at Dallas,Department of Mathematics MS EC 35
[2] Collin College,undefined
来源
关键词
Embeddings; Homogeneous pseudo-Riemannian manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We construct the embedding of the manifold x2 + y2 − u2 − v2 = 1 carrying the most general homogeneous metric into the eight-dimensional pseudo sphere.
引用
收藏
页码:1981 / 1985
页数:4
相关论文
共 50 条
  • [31] Sphere motion in ordered three-dimensional foams
    Davies, I. T.
    Cox, S. J.
    JOURNAL OF RHEOLOGY, 2012, 56 (03) : 473 - 483
  • [32] Maximum density of three-dimensional sphere packings
    Oesterlé, J
    ASTERISQUE, 2000, (266) : 405 - 413
  • [33] Three-dimensional flow separations on a rolling sphere
    Pravin K Verekar
    Jaywant H Arakeri
    Sādhanā, 2019, 44
  • [34] Spherical functions associated with the three-dimensional sphere
    Pacharoni, Ines
    Tirao, Juan
    Zurrian, Ignacio
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (06) : 1727 - 1778
  • [35] Pseudo-Haptics in three-dimensional space
    Ishii, Masahiro
    Sato, Shuichi
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2012, 66 (06):
  • [36] Mappings of the three-dimensional sphere into an n-dimensional complex
    Pontrjagin, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1942, 34 : 35 - 37
  • [37] Embedding three-dimensional bosonization dualities into string theory
    Jensen, Kristan
    Karch, Andreas
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [38] Embedding three-dimensional bosonization dualities into string theory
    Kristan Jensen
    Andreas Karch
    Journal of High Energy Physics, 2017
  • [39] Trace Formula for Integral Points on the Three-Dimensional Sphere
    V. A. Bykovskii
    M. D. Monina
    Doklady Mathematics, 2020, 101 : 9 - 11
  • [40] Trace Formula for Integral Points on the Three-Dimensional Sphere
    Bykovskii, V. A.
    Monina, M. D.
    DOKLADY MATHEMATICS, 2020, 101 (01) : 9 - 11