Chaos detection and parameter identification in fractional-order chaotic systems with delay

被引:3
|
作者
Liguo Yuan
Qigui Yang
Caibin Zeng
机构
[1] South China Agricultural University,Department of Applied Mathematics
[2] South China University of Technology,School of Sciences
[3] Utah State University,Center for Self
来源
Nonlinear Dynamics | 2013年 / 73卷
关键词
0–1 test for chaos; Parameter identification; Fractional-order delayed system; Caputo fractional derivative; Particle swarm optimization;
D O I
暂无
中图分类号
学科分类号
摘要
The paper first applies the 0–1 test for chaos to detecting chaos exhibited by fractional-order delayed systems. The results of the test reveal that there exists chaos in some fractional-order delayed systems with specific parameter values, which coincides with previous reports based on the phase portrait. In addition, it is very important to identify exactly the unknown specific parameters of fractional-order chaotic delayed systems in chaos control and synchronization. Thus, a method for parameter identification of fractional-order chaotic delayed systems based on particle swarm optimization (PSO) is presented. By treating the orders as parameters, the parameters and orders are identified through minimizing an objective function. PSO can efficiently find the optimal feasible solution of the objective function. Finally, numerical simulations on fractional-order chaotic logistic delayed system and fractional-order chaotic Chen delayed system show that the proposed method has effective performance of parameter identification.
引用
收藏
页码:439 / 448
页数:9
相关论文
共 50 条
  • [41] Parameter identification of fractional-order time delay system based on Legendre wavelet
    Wang, Zishuo
    Wang, Chunyang
    Ding, Lianghua
    Wang, Zeng
    Liang, Shuning
    Mechanical Systems and Signal Processing, 2022, 163
  • [42] Robust chaos synchronization of fractional-order chaotic systems with unknown parameters and uncertain perturbations
    Ruoxun Zhang
    Shiping Yang
    Nonlinear Dynamics, 2012, 69 : 983 - 992
  • [43] Using fractional-order integrator to control chaos in single-input chaotic systems
    Mohammad Saleh Tavazoei
    Mohammad Haeri
    Sadegh Bolouki
    Milad Siami
    Nonlinear Dynamics, 2009, 55 : 179 - 190
  • [44] Robust chaos synchronization of fractional-order chaotic systems with unknown parameters and uncertain perturbations
    Zhang, Ruoxun
    Yang, Shiping
    NONLINEAR DYNAMICS, 2012, 69 (03) : 983 - 992
  • [45] Using fractional-order integrator to control chaos in single-input chaotic systems
    Tavazoei, Mohammad Saleh
    Haeri, Mohammad
    Bolouki, Sadegh
    Siami, Milad
    NONLINEAR DYNAMICS, 2009, 55 (1-2) : 179 - 190
  • [46] STUDY ON CHAOS CONTROL OF FRACTIONAL-ORDER UNIFIED CHAOTIC SYSTEM
    Yin, Chuntao
    Zhao, Yufei
    Shen, Yongjun
    Li, Xianghong
    Fang, Jingzhao
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
  • [47] CHAOS AND ADAPTIVE SYNCHRONIZATIONS IN FRACTIONAL-ORDER SYSTEMS
    Liu, Xiaojun
    Hong, Ling
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (11):
  • [48] Chaos synchronization of fractional-order differential systems
    Li, CP
    Deng, WH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (07): : 791 - 803
  • [49] Impulsive stabilization of chaos in fractional-order systems
    Marius-F. Danca
    Michal Fečkan
    Guanrong Chen
    Nonlinear Dynamics, 2017, 89 : 1889 - 1903
  • [50] Impulsive stabilization of chaos in fractional-order systems
    Danca, Marius-F.
    Feckan, Michal
    Chen, Guanrong
    NONLINEAR DYNAMICS, 2017, 89 (03) : 1889 - 1903