Chaos detection and parameter identification in fractional-order chaotic systems with delay

被引:3
|
作者
Liguo Yuan
Qigui Yang
Caibin Zeng
机构
[1] South China Agricultural University,Department of Applied Mathematics
[2] South China University of Technology,School of Sciences
[3] Utah State University,Center for Self
来源
Nonlinear Dynamics | 2013年 / 73卷
关键词
0–1 test for chaos; Parameter identification; Fractional-order delayed system; Caputo fractional derivative; Particle swarm optimization;
D O I
暂无
中图分类号
学科分类号
摘要
The paper first applies the 0–1 test for chaos to detecting chaos exhibited by fractional-order delayed systems. The results of the test reveal that there exists chaos in some fractional-order delayed systems with specific parameter values, which coincides with previous reports based on the phase portrait. In addition, it is very important to identify exactly the unknown specific parameters of fractional-order chaotic delayed systems in chaos control and synchronization. Thus, a method for parameter identification of fractional-order chaotic delayed systems based on particle swarm optimization (PSO) is presented. By treating the orders as parameters, the parameters and orders are identified through minimizing an objective function. PSO can efficiently find the optimal feasible solution of the objective function. Finally, numerical simulations on fractional-order chaotic logistic delayed system and fractional-order chaotic Chen delayed system show that the proposed method has effective performance of parameter identification.
引用
收藏
页码:439 / 448
页数:9
相关论文
共 50 条
  • [21] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [22] Chaos and chaotic control in a fractional-order electronic oscillator
    Gao, X
    Yu, JB
    CHINESE PHYSICS, 2005, 14 (05): : 908 - 913
  • [23] Synchronization of fractional-order chaotic systems
    Gao, X
    Yu, JB
    2005 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS: VOL 1: COMMUNICATION THEORY AND SYSTEMS, 2005, : 1169 - 1172
  • [24] Chaotic Synchronization and Parameter Identification of Fractional-order Dynamical Equation with Attitude of Spacecraft
    Du Xiaowei
    Wu Aiguo
    Dong Jun
    Yu Kejie
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 1456 - 1461
  • [25] Identification and PID Control for a Class of Delay Fractional-order Systems
    Zhuoyun Nie
    Qingguo Wang
    Ruijuan Liu
    Yonghong Lan
    IEEE/CAAJournalofAutomaticaSinica, 2016, 3 (04) : 463 - 476
  • [26] Parameter identification of commensurate fractional-order chaotic system via differential evolution
    Tang, Yinggan
    Zhang, Xiangyang
    Hua, Changchun
    Li, Lixiang
    Yang, Yixian
    PHYSICS LETTERS A, 2012, 376 (04) : 457 - 464
  • [27] Identification and PID Control for a Class of Delay Fractional-order Systems
    Nie, Zhuoyun
    Wang, Qingguo
    Liu, Ruijuan
    Lan, Yonghong
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2016, 3 (04) : 463 - 476
  • [28] Parameter Identification of Fractional-order Chaotic System Based on Chemical Reaction Optimization
    Zhang, Junhao
    Gao, Fei
    Chen, Yang
    Zou, Yukun
    PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON MANAGEMENT ENGINEERING, SOFTWARE ENGINEERING AND SERVICE SCIENCES (ICMSS 2018), 2018, : 217 - 222
  • [29] Parameter identification of fractional-order chaotic systems using different Meta-heuristic Optimization Algorithms
    D. A. Yousri
    Amr M. AbdelAty
    Lobna A. Said
    A. S. Elwakil
    Brent Maundy
    Ahmed G. Radwan
    Nonlinear Dynamics, 2019, 95 : 2491 - 2542
  • [30] Parameter identification of fractional-order chaotic systems using different Meta-heuristic Optimization Algorithms
    Yousri, D. A.
    AbdelAty, Amr M.
    Said, Lobna A.
    Elwakil, A. S.
    Maundy, Brent
    Radwan, Ahmed G.
    NONLINEAR DYNAMICS, 2019, 95 (03) : 2491 - 2542